149 research outputs found
Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities
Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools.Singapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and Modelin
Screening of inhibitors for S130G inhibitor resistant mutants of TEM type beta-lactamase
Bacteria are remarkably adaptable organisms that acquire an almost limitless competence to survive under unpleasant conditions. The drastic emergence of antibiotic resistance among β-Lactamases is the most serious threat to hospitals and nosocomial settings. β-lactam inhibitors came into existence in order to overcome the problem of antibibiotic resistance in bacteria. The emergence of inhibitor resistant mutants has raised the alarms. In this study we have used structured based virtual screening approach and have screened out some inhibitors against S130G TEM mutant. All the compounds were tested in presence and absence of conserved active site water molecules. These compounds were found be showing much higher efficacy than known β-lactamase inhibitors. Amino acids G130, S70, N132, G130, Y105 and V216 were found crucial for the interaction of inhibitors within the active site
PB1-F2 Proteins from H5N1 and 20th Century Pandemic Influenza Viruses Cause Immunopathology
With the recent emergence of a novel pandemic strain, there is presently intense interest in understanding the molecular signatures of virulence of influenza viruses. PB1-F2 proteins from epidemiologically important influenza A virus strains were studied to determine their function and contribution to virulence. Using 27-mer peptides derived from the C-terminal sequence of PB1-F2 and chimeric viruses engineered on a common background, we demonstrated that induction of cell death through PB1-F2 is dependent upon BAK/BAX mediated cytochrome c release from mitochondria. This function was specific for the PB1-F2 protein of A/Puerto Rico/8/34 and was not seen using PB1-F2 peptides derived from past pandemic strains. However, PB1-F2 proteins from the three pandemic strains of the 20th century and a highly pathogenic strain of the H5N1 subtype were shown to enhance the lung inflammatory response resulting in increased pathology. Recently circulating seasonal influenza A strains were not capable of this pro-inflammatory function, having lost the PB1-F2 protein's immunostimulatory activity through truncation or mutation during adaptation in humans. These data suggest that the PB1-F2 protein contributes to the virulence of pandemic strains when the PB1 gene segment is recently derived from the avian reservoir
Structure based virtual screening to discover putative drug candidates: Necessary considerations and successful case studies
Phylogenetic Analysis of the Neuraminidase Gene Reveals that the H5N1 Strains Prevalent in Chickens During 2006 Bird Flu Outbreaks in Two Regions of Maharashtra, India Are Genetically Different
In February 2006, two outbreaks of highly pathogenic avian influenza A virus subtype H5N1 occurred in chickens in two neighboring districts (first in Nandurbar and second in Jalgaon) of Maharashtra, India, in a span of 12 days. In the present study, the neuraminidase (NA) gene of the two Indian H5N1 isolates was taken into consideration to find if the two strains are genetically similar. Phylogenetic analysis of the NA gene showed that the H5N1 strains isolated from the two outbreaks were not originated from the same source. The first Indian isolate (Nandubar/7972/06) was clustered closest to an isolate from chicken in Vietnam in 2004, whereas the second Indian isolate (Jalgaon/8824/06) showed resemblance to strains isolated from swan in Italy and Iran in 2006. Moreover, amino acid sequence analysis showed varying hot spots for substitutions between these two Indian isolates, and three substitutions were found at functional domain sites. Secondary structure changes due to these substitutions were also reported. This study reveals that the H5N1 strains isolated from chickens during 2006 bird flu outbreaks in two neighboring districts of Maharashtra, India are genetically different
- …
