5,531 research outputs found
Optimal design of solidification processes
An optimal design algorithm is presented for the analysis of general solidification processes, and is demonstrated for the growth of GaAs crystals in a Bridgman furnace. The system is optimal in the sense that the prespecified temperature distribution in the solidifying materials is obtained to maximize product quality. The optimization uses traditional numerical programming techniques which require the evaluation of cost and constraint functions and their sensitivities. The finite element method is incorporated to analyze the crystal solidification problem, evaluate the cost and constraint functions, and compute the sensitivities. These techniques are demonstrated in the crystal growth application by determining an optimal furnace wall temperature distribution to obtain the desired temperature profile in the crystal, and hence to maximize the crystal's quality. Several numerical optimization algorithms are studied to determine the proper convergence criteria, effective 1-D search strategies, appropriate forms of the cost and constraint functions, etc. In particular, we incorporate the conjugate gradient and quasi-Newton methods for unconstrained problems. The efficiency and effectiveness of each algorithm is presented in the example problem
A Generalized Programming Solution to a Convex Programming Problem with a Homogeneous Objective
The Role of Models in Determining Policy for Transition to a more Resilient Technological Society
Modern technological societies are confronted by a vast array of problems. They are interlocked, one with another, forming a vast web. The solution to anyone problem will not necessarily ease the functioning of the whole -- indeed, it can often make things worse. This is true because the modern technological world is incredibly complex, interconnected, and interdependent
The Complexity of the Simplex Method
The simplex method is a well-studied and widely-used pivoting method for
solving linear programs. When Dantzig originally formulated the simplex method,
he gave a natural pivot rule that pivots into the basis a variable with the
most violated reduced cost. In their seminal work, Klee and Minty showed that
this pivot rule takes exponential time in the worst case. We prove two main
results on the simplex method. Firstly, we show that it is PSPACE-complete to
find the solution that is computed by the simplex method using Dantzig's pivot
rule. Secondly, we prove that deciding whether Dantzig's rule ever chooses a
specific variable to enter the basis is PSPACE-complete. We use the known
connection between Markov decision processes (MDPs) and linear programming, and
an equivalence between Dantzig's pivot rule and a natural variant of policy
iteration for average-reward MDPs. We construct MDPs and show
PSPACE-completeness results for single-switch policy iteration, which in turn
imply our main results for the simplex method
Plasticity and Dislocation Dynamics in a Phase Field Crystal Model
The critical dynamics of dislocation avalanches in plastic flow is examined
using a phase field crystal (PFC) model. In the model, dislocations are
naturally created, without any \textit{ad hoc} creation rules, by applying a
shearing force to the perfectly periodic ground state. These dislocations
diffuse, interact and annihilate with one another, forming avalanche events. By
data collapsing the event energy probability density function for different
shearing rates, a connection to interface depinning dynamics is confirmed. The
relevant critical exponents agree with mean field theory predictions
Emergence of foams from the breakdown of the phase field crystal model
The phase field crystal (PFC) model captures the elastic and topological
properties of crystals with a single scalar field at small undercooling. At
large undercooling, new foam-like behavior emerges. We characterize this foam
phase of the PFC equation and propose a modified PFC equation that may be used
for the simulation of foam dynamics. This minimal model reproduces von
Neumann's rule for two-dimensional dry foams, and Lifshitz-Slyozov coarsening
for wet foams. We also measure the coordination number distribution and find
that its second moment is larger than previously-reported experimental and
theoretical studies of soap froths, a finding that we attribute to the wetness
of the foam increasing with time.Comment: 4 pages, 4 figure
Edge Elimination in TSP Instances
The Traveling Salesman Problem is one of the best studied NP-hard problems in
combinatorial optimization. Powerful methods have been developed over the last
60 years to find optimum solutions to large TSP instances. The largest TSP
instance so far that has been solved optimally has 85,900 vertices. Its
solution required more than 136 years of total CPU time using the
branch-and-cut based Concorde TSP code [1]. In this paper we present graph
theoretic results that allow to prove that some edges of a TSP instance cannot
occur in any optimum TSP tour. Based on these results we propose a
combinatorial algorithm to identify such edges. The runtime of the main part of
our algorithm is for an n-vertex TSP instance. By combining our
approach with the Concorde TSP solver we are able to solve a large TSPLIB
instance more than 11 times faster than Concorde alone
- …
