117 research outputs found

    Spontaneous Breaking of Classical PT Symmetry

    Get PDF
    The classical trajectories of the family of complex PT-symmetric Hamiltonians H=p2+x2(ix)ϵH=p^2+x^2(ix)^\epsilon (ϵ0\epsilon\geq0) form closed orbits. All such complex orbits that have been studied in the past are PT symmetric (left-right symmetric). The periods of these orbits exhibit an unusual dependence on the parameter ϵ\epsilon. There are regions in ϵ\epsilon of smooth behavior interspersed with regions of rapid variation. It is demonstrated that the onset of rapid variation is associated with strange new kinds of classical trajectories that have never been seen previously. These rare kinds of trajectories are not PT symmetric and occur only for special rational values of ϵ\epsilon.Comment: 16 pages, 17 figures, accepted for publication in the Journal of Mathematical Physic

    Classical Trajectories for Complex Hamiltonians

    Full text link
    It has been found that complex non-Hermitian quantum-mechanical Hamiltonians may have entirely real spectra and generate unitary time evolution if they possess an unbroken \cP\cT symmetry. A well-studied class of such Hamiltonians is H=p2+x2(ix)ϵH= p^2+x^2(ix)^\epsilon (ϵ0\epsilon\geq0). This paper examines the underlying classical theory. Specifically, it explores the possible trajectories of a classical particle that is governed by this class of Hamiltonians. These trajectories exhibit an extraordinarily rich and elaborate structure that depends sensitively on the value of the parameter ϵ\epsilon and on the initial conditions. A system for classifying complex orbits is presented.Comment: 24 pages, 34 figure

    The Farmer-Labor Party In Minnesota Politics: 1918-1948

    Get PDF
    This dissertation is an examination of the Farmer-Labor Party in Minnesota politics between 1918 and 1948. This movement represented an exceptional chapter in Minnesota history, since the Farmer-Labor Party was the only sustained successful third party movement in the state. This study focuses on the origins of the movement and the reasons for its emergence, its main figures, the goals of the party, its continued electoral success from 1922 through 1936, its decline beginning in 1938, its merger with the Democratic Party of Minnesota in 1944, and finally the subsequent battle for control of this newly-merged DFL (Democratic Farmer-Labor) Party between Democrats led by Hubert H. Humphrey and the former Farmer-Laborites between 1946 and 1948. The study uses an extensive collection of primary and secondary sources relating to the Minnesota Farmer-Labor Party and other issues and political events within the timeframe in question. The conclusions of the investigation include the claim that the movement emerged chiefly because there was no viable political opposition to the dominant Republican Party in Minnesota during this period, and that the Farmer-Labor Party was a long-term movement comprised of a fractious coalition of urban-labor and rural-agrarian constituents held together by a series of leaders. The party’s emergence and rise to power in the early 1920s was fueled by a number of factors, however the creation and the continuing governance of the party and its association was initiated and administered by a Twin Cities-based urban-labor leadership (and as such, the movement was not merely another chapter of agrarian protest politics). This urban-labor leadership nucleus effectively absorbed the state’s Nonpartisan League by 1922, joined that movement with its own emerging third party urban-labor movement, and then transformed this new coalition into the Farmer-Labor Party. The party’s demise was caused by a number of factors which coalesced in the late 1930s, including the implementation of federal farm and labor policies under Franklin Roosevelt’s New Deal, corruption within the party, a decline in the party’s leadership, and increased factional conflict based on divisions of the rural-agrarian and urban-labor sectors of the party

    Gas Mass Fractions and Star Formation in Blue-Sequence E/S0 Galaxies

    Get PDF
    Recent work has identified a population of low-redshift E/S0 galaxies that lie on the blue sequence in color vs. stellar mass parameter space, where spiral galaxies typically reside. While high-mass blue-sequence E/S0s often resemble young merger or interaction remnants likely to fade to the red sequence, we focus on blue-sequence E/S0s with lower stellar masses (< a few 10^10 M_sun), which are characterized by fairly regular morphologies and low-density field environments where fresh gas infall is possible. This population may provide an evolutionary link between early-type galaxies and spirals through disk regrowth. Focusing on atomic gas reservoirs, we present new GBT HI data for 27 E/S0s on both sequences as well as a complete tabulation of archival HI data for other galaxies in the Nearby Field Galaxy Survey. Normalized to stellar mass, the atomic gas masses for 12 of the 14 blue-sequence E/S0s range from 0.1 to >1.0. These gas-to-stellar mass ratios are comparable to those of spiral and irregular galaxies and have a similar dependence on stellar mass. Assuming that the HI is accessible for star formation, we find that many of our blue-sequence E/S0s can increase in stellar mass by 10-60% in 3 Gyr in both of two limiting scenarios, exponentially declining star formation and constant star formation. In a constant star formation scenario, about half of the blue-sequence E/S0s require fresh gas infall on a timescale of <3 Gyr to avoid exhausting their atomic gas reservoirs and evolving to the red sequence. We present evidence that star formation in these galaxies is bursty and likely involves externally triggered gas inflows. Our analysis suggests that most blue-sequence E/S0s are indeed capable of substantial stellar disk growth on relatively short timescales. (abridged)Comment: ApJ, accepted, 26 pages with 12 figures (5 color), 5 table

    Peculiar early-type galaxies in the SDSS Stripe82

    Get PDF
    We explore the properties of `peculiar' early-type galaxies (ETGs) in the local Universe, that show (faint) morphological signatures of recent interactions such as tidal tails, shells and dust lanes. Standard-depth (51s exposure) multi-colour galaxy images from the Sloan Digital Sky Survey (SDSS) are combined with the significantly (2 mags) deeper monochromatic images from the public SDSS Stripe82 to extract, through careful visual inspection, a robust sample of nearby, luminous ETGs, including a subset of ~70 peculiar systems. 18% of ETGs exhibit signs of disturbed morphologies (e.g. shells), while 7% show evidence of dust lanes and patches. The peculiar ETG population is found to preferentially inhabit low-density environments (outskirts of clusters, groups or the field). An analysis of optical emission-line ratios indicates that the fraction of peculiar ETGs that are Seyferts or LINERs (19.4%) is twice the corresponding values in their relaxed counterparts (10.1%). LINER-like emission is the dominant type of nebular activity in all ETG classes, plausibly driven by stellar photoionisation associated with recent star formation. An analysis of UV-optical colours indicates that, regardless of the luminosity range being considered, the fraction of peculiar ETGs that have experienced star formation in the last Gyr is a factor of ~1.5 higher than that in their relaxed counterparts. The spectro-photometric results strongly suggest that the interactions that produce the morphological peculiarities also induce low-level recent star formation which, based on the recent literature, are likely to contribute a few percent of the stellar mass over the last 1 Gyr. The catalogue of galaxies that forms the basis of this paper can be obtained at: http://www.mssl.ucl.ac.uk/~ska/stripe82/skaviraj_stripe82.dat or on request from the author.Comment: MNRAS in pres

    Galaxy Zoo:reproducing galaxy morphologies via machine learning

    Get PDF
    We present morphological classifications obtained using machine learning for objects in SDSS DR6 that have been classified by Galaxy Zoo into three classes, namely early types, spirals and point sources/artifacts. An artificial neural network is trained on a subset of objects classified by the human eye and we test whether the machine learning algorithm can reproduce the human classifications for the rest of the sample. We find that the success of the neural network in matching the human classifications depends crucially on the set of input parameters chosen for the machine-learning algorithm. The colours and parameters associated with profile-fitting are reasonable in separating the objects into three classes. However, these results are considerably improved when adding adaptive shape parameters as well as concentration and texture. The adaptive moments, concentration and texture parameters alone cannot distinguish between early type galaxies and the point sources/artifacts. Using a set of twelve parameters, the neural network is able to reproduce the human classifications to better than 90% for all three morphological classes. We find that using a training set that is incomplete in magnitude does not degrade our results given our particular choice of the input parameters to the network. We conclude that it is promising to use machine- learning algorithms to perform morphological classification for the next generation of wide-field imaging surveys and that the Galaxy Zoo catalogue provides an invaluable training set for such purposes

    Galaxy and Mass Assembly (GAMA): merging galaxies and their properties

    Get PDF
    We derive the close pair fractions and volume merger rates for galaxies in the Galaxy and Mass Assembly (GAMA) survey with −23 < Mr < −17 (ΩM = 0.27, ΩΛ = 0.73, H0 = 100 km s−1 Mpc−1) at 0.01 < z < 0.22 (look-back time of <2 Gyr). The merger fraction is approximately 1.5 per cent Gyr−1 at all luminosities (assuming 50 per cent of pairs merge) and the volume merger rate is ≈3.5 × 10−4 Mpc−3 Gyr−1. We examine how the merger rate varies by luminosity and morphology. Dry mergers (between red/spheroidal galaxies) are found to be uncommon and to decrease with decreasing luminosity. Fainter mergers are wet, between blue/discy galaxies. Damp mergers (one of each type) follow the average of dry and wet mergers. In the brighter luminosity bin (−23 < Mr < −20), the merger rate evolution is flat, irrespective of colour or morphology, out to z ∼ 0.2. The makeup of the merging population does not appear to change over this redshift range. Galaxy growth by major mergers appears comparatively unimportant and dry mergers are unlikely to be significant in the buildup of the red sequence over the past 2 Gyr. We compare the colour, morphology, environmental density and degree of activity (BPT class, Baldwin, Phillips & Terlevich) of galaxies in pairs to those of more isolated objects in the same volume. Galaxies in close pairs tend to be both redder and slightly more spheroid dominated than the comparison sample. We suggest that this may be due to ‘harassment’ in multiple previous passes prior to the current close interaction. Galaxy pairs do not appear to prefer significantly denser environments. There is no evidence of an enhancement in the AGN fraction in pairs, compared to other galaxies in the same volume

    Galaxy interactions II: High density environments

    Full text link
    With the aim to assess the role of dense environments in galaxy interactions, properties we present an analysis of close galaxy pairs in groups and clusters, obtained from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7). We identified pairs that reside in groups by cross-correlating the total galaxy pair catalogue with the SDSS-DR7 group catalogue from Zapata et al. (2009). We classify pair galaxies according to the intensity of interaction. We analysed the effect of high density environments on different classes of galaxy-galaxy interactions and we have also studied the impact of the group global environment on pair galaxies. We find that galaxy pairs are more concentrated towards the group centres with respect to the other group galaxy members, and disturbed pairs show a preference to contain the brightest galaxy in the groups. The color-magnitude relation exhibits significant differences between pair galaxies and the control sample, consisting in color tails with a clear excess of extremely blue and red galaxies for merging systems. In addition, pair galaxies show a significant excess of young stellar populations with respect to galaxies in the control sample; this finding suggests that, in dense environments, strong interactions produce an important effect in modifying galaxy properties. We find that the fraction of star forming galaxies decreases toward the group centre; however, galaxy pairs show a more efficient star formation activity than galaxies without a close companion. We have also found that pair galaxies prefer groups with low density global environments with respect to galaxies of the corresponding control sample. Blue, young stellar population galaxies prefer groups within low density global environments.Comment: 10 pages, 11 figures, accepted for publication in A&

    An infrared study of local galaxy mergers

    Get PDF
    A. Carpineti, et al., “An infrared study of local galaxy mergers”, Astronomy & Astrophysics, Vol. 577, May 2015. This version of record is available online at: https://doi.org/10.1051/0004-6361/201425276 Reproduced with Permission from Astronomy and Astrophysics, © ESO 2016.We combine a large, homogeneous sample of \sim3000 local mergers with the Imperial IRAS Faint Source Redshift Catalogue (IIFSCz), to perform a blind far-infrared (FIR) study of the local merger population. The IRAS-detected mergers are mostly (98%98\%) spiral-spiral systems, residing in low density environments, a median FIR luminosity of 1011L10^{11} L_\odot (which translates to a median star formation rate of around 15Myr1M_\odot yr^{-1}). The FIR luminosity -- and therefore the star formation rate -- shows little correlation with group richness and scales with the total stellar mass of the system, with little or no dependence on the merger mass ratio. In particular, minor mergers (mass ratios $Peer reviewedFinal Published versio

    The AMIGA sample of isolated galaxies. XI. Optical characterisation of nuclear activity

    Full text link
    Context.- This paper is part of a series involving the AMIGA project (Analysis of the Interstellar Medium of Isolated GAlaxies), which identifies and studies a statistically-significant sample of the most isolated galaxies in the northern sky. Aims.- We present a catalogue of nuclear activity, traced by optical emission lines, in a well-defined sample of the most isolated galaxies in the local Universe, which will be used as a basis for studying the effect of the environment on nuclear activity. Methods.- We obtained spectral data from the 6th Data Release of the Sloan Digital Sky Survey, which were inspected in a semi-automatic way. We subtracted the underlying stellar populations from the spectra (using the software Starlight) and modelled the nuclear emission features. Standard emission-line diagnostics diagrams were applied, using a new classification scheme that takes into account censored data, to classify the type of nuclear emission. Results.- We provide a final catalogue of spectroscopic data, stellar populations, emission lines and classification of optical nuclear activity for AMIGA galaxies. The prevalence of optical active galactic nuclei (AGN) in AMIGA galaxies is 20.4%, or 36.7% including transition objects. The fraction of AGN increases steeply towards earlier morphological types and higher luminosities. We compare these results with a matched analysis of galaxies in isolated denser environments (Hickson Compact Groups). After correcting for the effects of the morphology and luminosity, we find that there is no evidence for a difference in the prevalence of AGN between isolated and compact group galaxies, and we discuss the implications of this result. Conclusions.- We find that a major interaction is not a necessary condition for the triggering of optical AGN.Comment: 16 pages, 11 figures, 12 tables, published in Astronomy and Astrophysics. Figure 5 corrected: [OI] diagram adde
    corecore