964 research outputs found

    Flow optimization study of a batch microfluidics PET tracer synthesizing device.

    Get PDF
    We present numerical modeling and experimental studies of flow optimization inside a batch microfluidic micro-reactor used for synthesis of human-scale doses of Positron Emission Tomography (PET) tracers. Novel techniques are used for mixing within, and eluting liquid out of, the coin-shaped reaction chamber. Numerical solutions of the general incompressible Navier Stokes equations along with time-dependent elution scalar field equation for the three dimensional coin-shaped geometry were obtained and validated using fluorescence imaging analysis techniques. Utilizing the approach presented in this work, we were able to identify optimized geometrical and operational conditions for the micro-reactor in the absence of radioactive material commonly used in PET related tracer production platforms as well as evaluate the designed and fabricated micro-reactor using numerical and experimental validations

    On a multiscale strategy and its optimization for the simulation of combined delamination and buckling

    Full text link
    This paper investigates a computational strategy for studying the interactions between multiple through-the-width delaminations and global or local buckling in composite laminates taking into account possible contact between the delaminated surfaces. In order to achieve an accurate prediction of the quasi-static response, a very refined discretization of the structure is required, leading to the resolution of very large and highly nonlinear numerical problems. In this paper, a nonlinear finite element formulation along with a parallel iterative scheme based on a multiscale domain decomposition are used for the computation of 3D mesoscale models. Previous works by the authors already dealt with the simulation of multiscale delamination assuming small perturbations. This paper presents the formulation used to include geometric nonlinearities into this existing multiscale framework and discusses the adaptations that need to be made to the iterative process in order to ensure the rapid convergence and the scalability of the method in the presence of buckling and delamination. These various adaptations are illustrated by simulations involving large numbers of DOFs

    High pressure solubility data of carbon dioxide in (tri-iso-butyl(methyl)phosphonium tosylate + water) systems

    Get PDF
    Ionic liquids are attracting great attention nowadays due to their interesting properties which make them useful in a broad range of applications including reaction media or separation/capture of environmentally hazardous gases such as carbon dioxide. In many cases, for practical and/or economical reasons, the use of aqueous solutions of ILs would be preferable to their use as pure compounds. In this work, high pressure equilibrium data for the {carbon dioxide (CO2) + tri-iso-butyl(methyl)phosphonium tosylate [iBu3MeP][TOS] + water system were measured at temperatures ranging from (276 to 370) K and pressures up to 100 MPa. Measurements were performed using a high-pressure cell with a sapphire window that allows direct observation of the liquid–vapour transition. Mixtures with different IL concentrations were studied in order to check the influence of the amount of IL on the solubility of CO2 in the aqueous mixture. The results show that the presence of IL enhances the solubility of CO2 in the (IL + water) system revealing a salting-in effect of the IL on the solubility of CO2. The appearance of a three phase region was observed for IL concentrations higher than 4 mol% of IL in water when working at pressures between 4 and 8 MPa and temperatures between (280 and 305) K. In this range, the upper limit of the VLE region observed is shown to increase with the temperature being almost independent of the IL initial concentration in the mixture.Fundação para a Ciência e a Tecnologia (FCT)FEDERCICECO, University of Aveir

    Design and Optimization of Coin-Shaped Microreactor Chips for PET Radiopharmaceutical Synthesis

    Get PDF
    An integrated elastomeric microfluidic device, with a footprint the size of a postage stamp, has been designed and optimized for multistep radiosynthesis of PET tracers. Methods: The unique architecture of the device is centered around a 5-µL coin-shaped reactor, which yields reaction efficiency and speed from a combination of high reagent concentration, pressurized reactions, and rapid heat and mass transfer. Its novel features facilitate mixing, solvent exchange, and product collection. New mixing mechanisms assisted by vacuum, pressure, and chemical reactions are exploited. Results: The architecture of the reported reactor is the first that has allowed batch-mode microfluidic devices to produce radiopharmaceuticals of sufficient quality and quantity to be validated by in vivo imaging. Conclusion: The reactor has the potential to produce multiple human doses of ^(18)F-FDG; the most impact, however, is expected in the synthesis of PET radiopharmaceuticals that can be made only with low yields by currently available equipment

    Determination of bubble point pressure of two live oils with injected nitrogen by quartz crystal resonator

    Get PDF
    ACLInternational audienceAn experimental investigation of bubble pressure determination of two live oils with injected nitrogen is presented in this work. Conventional bubble point measurement is done with the aid of a constant expansion test. In such method the bubble point is characterized by an inflection in the PV curve as the oil becomes saturated. For some oils the PV curve is smoothed and it becomes difficult or impossible to accurately determine the bubble point. This work demonstrates that in such cases, the use of quartz crystal resonator technique makes it possible. This technique is successfully applied to determine the bubble point pressure of two live oils in which nitrogen is injected up to 40 mol%

    A physically-based and fully coupled model of elasto-plasticity and damage for dynamic failure in ductile metals

    Get PDF
    It is well established that spall fracture and other rapid failures in ductile materials are often dominated by nucleation and growth ofmicro-voids. In the present work, a mechanistic model for failure by cumulative nucleation and growth of voids is fully coupled with the thermoelastoplasticconstitutive equations of the Mechanical Threshold Stress (MTS) which is used to model the evolution of the flow stress. Thedamage modeling includes both ductile and brittle mechanisms. It accounts for the effects of inertia, rate sensitivity, fracture surface energy, andnucleation frequency. The MTS model used for plasticity includes the superposition of different thermal activation barriers for dislocationmotion. Results obtained in the case of uncoupled and coupled model of plasticity and damage from the simulations of the planar impact withcylindrical target, are presented and compared with the experimental results for OFHC copper. This comparison shows the model capabilities inpredicting the experimentally measured free surface velocity profile as well as the observed spall and other damage patterns in the material underimpact loading. These results are obtained using the finite element code Abaqus/Explicit

    Finite elements simulations of thin copper sheets blanking : study of blanking paramaters on sheared edge quality

    Get PDF
    The capabilities of finite elements codes allow now accurate simulations of blanking processes when appropriate materials modelling are used. Over the last decade, numerous numerical studies have focused on the influence of process parameters such as punch-die clearance, tools geometry and friction on blanking force and blank profile (sheared edge). The proposed study focuses on the finite elements simulations of a blanking process using a new viscoplastic model for the evolution of the flow stress coupled with a new damage model. The commercial finite elements code ABAQUS/Explicit has been chosen to simulate the blanking process. The finite elements predictions have been compared with experimental results. Then the finite elements simulations have been used to assess the influence of punch-die clearance as well as the influence of tool wear and friction on sheared edge quality

    Influence of Dissipated Energy on Shear Band Spacing in HY100 Steel

    Get PDF
    International audienceTo analyze the formation of multiple shear bands in HY-100 steel, we consider an infinitely extended layer of finite thickness subjected to shear loading. The perturbation approach, associated with numerical methods, is used to determine the instability modes. The criteria of Wright-Ockendon and Molinari are used to determine the shear band spacing. The hypothesis consisting in considering the proportion of plastic work dissipated as heat (quantified by the Taylor-Quinney coefficient B) as independent of the loading path is now recognized as highly simplistic. The present work attempts to provide a systematic approach to the inelastic heat fraction evolution for a general loading within the framework of thermoviscoplastic standard modeling including a number of material parameters as strain hardening, strain rate sensitivity, thermal softening. The effect of each material parameter on the shear band spacing is determined by using a power law constitutive relation. The Johnson Cook and power law models are used to illustrate the influence of the constitutive relation on the results for the adiabatic shear band spacing, by studying the response of HY-100 steel. We have compared our results with available experimental results in the literature over a very wide range of strain rate (103 -105 s-1) . In this study, we show that the variation of the Taylor-Quinney parameter, B(y), as a function of shear strain is an important parameter that plays a significant role in the calculation of the shear band spacing

    Simulation of the Taylor impact test and analysis of damage evolution using a nucleation and growth based approach

    Get PDF
    International audienceComputational modeling of the Taylor impact test, using OFHC copper rods are carried out for two impact velocities (260 m/s and 365 m/s). The aim of this work is to demonstrate the efficiency of the recently proposed material model for dynamic plasticity and failure for metals. This model combines the use of a damage approach based on void nucleation and growth, with the Mechanical Threshold Stress (MTS) model for the evolution of the flow stress in isotropic plasticity. The proposed approach is implemented in the finite element code ABAQUS/Explicit via a user material subroutine and the symmetric Taylor impact test, using copper rods, is simulated. The predicted results are compared to the experimental results reported in the open literature and good agreement is found for both shape change and damage distribution

    Caractérisation des bruts lourds en présence de solvant

    Get PDF
    La croissance de la demande en produits pétroliers (essence et gazole), en particulier dans les pays développés, et la nature limitée des ressources pétrolières conduisent l industrie pétrolière à s intéresser de plus en plus à l exploitation et la transformation des huiles lourdes et extra-lourdes. Leurs propriétés non conventionnelles du fait de leur forte composition en asphaltènes (particules définies comme l'ensemble de constituants insolubles dans le n-heptane et solubles dans le toluène) nécessitent la mise en oeuvre de procédés de plus en plus sophistiqués à toutes les étapes de leur exploitation et de leur production. Ces bruts, situés principalement au Canada et au Venezuela, sont caractérisés par leur forte viscosité de 1 à 55 Pa.s (1 000 cP à 55 000 cP), qui rend leur transport en surface impossible dans leur état naturel. Le développement de solutions technologiques nouvelles repose sur une meilleure connaissance des propriétés thermo- physiques et du comportement colloïdal de ces produits.Les méthodes de caractérisation expérimentale et de modélisation utilisées pour les bruts conventionnels sont inadaptées pour les bruts lourds et extra lourds. La caractérisation PVT des bruts lourds fait l objet de nombreux travaux à l heure actuelle. Les propriétés à déterminer sont les équilibres de phase et les propriétés thermo physiques des phases en équilibre. Dans ce contexte, cette thèse a pour objectifs principaux le développement de méthodes expérimentales et de modèles adaptés aux bruts lourds et aux procédés de récupération envisagés pour ces bruts (production froide, injection de solvant VAPEX, injection de vapeur SAGD, etc...).Due to increasing demand for fuel, in particular for developed countries, and the limited nature of reserves, petroleum industry is, and will, growing concerned by the heavy and and extra-heavy oil processing. The non-conventional properties of these oils (due to a high asphaltene composition) require specific engineering solutions during the different steps of their processing. These crudes, mainly localized in Canada and Venezuela, are characterized by their strong viscosity, from 1 up to 55 Pa.s, which makes their transport to earth surface impossible. The development of new technological solutions is based on a better knowledge of the thermophysical properties and the colloidal behavior of these products. The methods of experimental characterization and modelling used for the conventional crudes are unsuited for both heavy and extra heavy crudes. To date, characterization PVT of heavy crudes is the subject of numerous studies. The properties to be determined are balances of phase and thermophysical properties of the equilibrium cycles. In this context, the main objectives of this thesis are not only the development of experimental methods and models suitable for heavy crudes, but also the recovery processes envisaged for these crudes (cold production, VAPEX process, SAGD process, etc ).PAU-BU Sciences (644452103) / SudocSudocFranceF
    corecore