175 research outputs found

    A study of the influence of TiO2 addition in Al2O3 coatings sprayed by suspension plasma spray

    Get PDF
    In this work, five different concentrations of a mixture of TiO2/Al2O3 nanopowders in an alcoholic suspension at 10wt.% solid content were sprayed by Suspension Plasma Spraying on steel discs. The influence of the presence of TiO2 at 0, 13, 40 and 75wt.% in Al2O3 was analysed by studying the properties of the sprayed coatings. Microscopy analysis of the projected coatings revealed a homogeneously distributed microstructure, where the densification of the coating increases with TiO2 content, while the original nanostructure is maintained. A nanoindentation study revealed an increment of nanohardness and elastic modulus due to the densifying effect of TiO2. The addition of significant amounts of TiO2 has been revealed as necessary in order to favour the fusion of Al2O3 in the SPS process

    MICRO-SCALE STUDY OF RESIDUAL STRESSES IN CR2O3 COATINGS SPRAYED BY APS

    Get PDF
    Whichever the application field, every material forming process generates residual stresses on the surface. While they are likely to enhance the aimed properties of the final mechanical part, these stresses may also drastically reduce them and result in early failures. Therefore, understanding the residual stress state remains a major challenge when coating complex parts, especially as most characterization methods at the microscopic scale involve specific sample preparation procedures which may affect the residual stresses field. This work investigates the residual stress state that exists in chromium oxide coatings deposited via Atmospheric Plasma Spray (APS), using two pioneering techniques featuring high spatial resolution: Scanning Microwave Microscopy and Raman Micro-Spectroscopy. The first technique combines the measurement of microwave electromagnetic capacities of a Vector Network Analyzer with the subnanometric resolution of an Atomic Force Microscope: it thus enables performing depth investigations at very accurately defined positions of the probe on the surface. The second technique relies on the principle of photons inelastic scattering and involves a laser beam aiming at the material sample: it allows a fine characterization of the microstructure as well as defects and stresses detection via molecular vibratory signatures. The investigation scale is limited here to a few cubic micrometers. Due to the highly localized scales of our investigations, which also depend on the device, the objective of our procedure required that the comparison should be made not on individual points but on definite mapped areas, every spot being analyzed and post-treated one after another, with optimum measuring parameters. Results have been correlated with XRD measurements to cross-check the average amount of stress observed over a wider area

    GWAS in the SIGNAL/PHARE clinical cohort restricts the association between the FGFR2 locus and estrogen receptor status to HER2-negative breast cancer patients

    Get PDF
    International audienceGenetic polymorphisms are associated with breast cancer risk. Clinical and epidemiological observations suggest that clinical characteristics of breast cancer, such as estrogen receptor or HER2 status, are also influenced by hereditary factors. To identify genetic variants associated with pathological characteristics of breast cancer patients, a Genome Wide Association Study was performed in a cohort of 9365 women from the French nationwide SIGNAL/PHARE studies (NCT00381901/RECF1098). Strong association between the FGFR2 locus and ER status of breast cancer patients was observed (ER-positive n=6211, ER-negative n=2516; rs3135718 OR=1.34 p=5.46x10-12). This association was limited to patients with HER2-negative tumors (ER-positive n=4267, ER-negative n=1185; rs3135724 OR=1.85 p=1.16x10-11). The FGFR2 locus is known to be associated with breast cancer risk. This study provides sound evidence for an association between variants in the FGFR2 locus and ER status among breast cancer patients, particularly among patients with HER2-negative disease. This refinement of the association between FGFR2 variants and ER-status to HER2-negative disease provides novel insight to potential biological and clinical influence of genetic polymorphisms on breast tumors

    Microstructure and photocatalytic activity of suspension plasma sprayed TiO2 coatings on steel and glass substrates

    Full text link
    In this study, TiO 2 coatings were deposited by suspension plasma spraying (SPS) from a commercial TiO 2 nanoparticle suspension on two different substrates: a standard stainless steel and a Pyrex glass. Coatings were sprayed on both substrates with an F4-MB monocathode torch; a Triplex Pro tricathode torch was also used to spray coatings just on the stainless steel substrates. Spraying distance and cooling were varied.The anatase content in the coatings, determined by XRD, ranged from 32 to 72 wt% A significant amount of anatase to rutile transformation was found to occur during cooling. Examination of the microstructure revealed that the coating microstructure was bimodal, involving a non-molten region consisting mainly of anatase nanoparticle agglomerates and a molten region. The glass substrate coatings displayed a segregated phase distribution, particularly when the surface to be coated was cooled. Photocatalytic activity was determined by a methylene blue test.The experimental data fitted well to a first-order kinetic. All the coatings exhibited high photocatalytic activity in comparison with that of a commercial sol-gel coating. However, unlike much of the previous research, photocatalytic activity did not correlate with the anatase content determined by XRD. © 2011 Elsevier B.V.This work has been supported by the Spanish Ministry of Science and Education (MAT2009-14144-C03-01), by the Spanish Ministry of Science and Innovation (PID-600200-2009-5) and by the European Commission in the frame of the Interreg IV B Sudoe programme (Eliare: SOE1/P1/F169).Bannier, E.; Darut, G.; Sánchez, E.; Denoirjean, A.; Bordes, M.; Salvador Moya, MD.; Rayón Encinas, E.... (2011). Microstructure and photocatalytic activity of suspension plasma sprayed TiO2 coatings on steel and glass substrates. Surface and Coatings Technology. 206(2):378-386. https://doi.org/10.1016/j.surfcoat.2011.07.039S378386206

    Sliding Wear Behavior of Al2O3-TiO2 Coatings Fabricated by the Suspension Plasma Spraying Technique

    Full text link
    [EN] The friction and dry sliding wear behavior of alumina and alumina-titania near-nanometric coatings were examined. Coatings were obtained by the suspension plasma spraying technique. Dry sliding wear tests were performed on a ball-on-disk tribometer, with an Al2O3 ball as counterpart material, a normal load of 2 N, a sliding distance of 1200 m and a sliding speed of 0.1 m/s. The effect of including TiO2 in the fabricated coatings on friction coefficient behavior, wear rates and wear damage patterns was determined. The addition of TiO2 to the coatings was found to greatly increase wear resistance by, for example, 2.6-fold for 40 wt% of TiO2. The analysis of the wear surface was correlated with microstructural parameters, mechanical properties and wear rates.The authors wish to thank for the Spanish Ministry of Economy and Competitiveness (MAT2012-38364-C03) and the Autonomous Government of Valencia for funding for the stay in SPCTS-UMR CNRS (France), and the French FCENANOSURF consortium funded by the French Ministry and Industry and local governments of Region Centre and Region Limousin.Klyatskina, E.; Espinosa Fernández, L.; Darut, G.; Segovia López, EF.; Salvador Moya, MD.; Montavon, G.; Agorges, H. (2015). Sliding Wear Behavior of Al2O3-TiO2 Coatings Fabricated by the Suspension Plasma Spraying Technique. Tribology Letters. 59(1):1-9. https://doi.org/10.1007/s11249-015-0530-5S19591Pawlowski, L.: The Science and Engineering of Thermal Spray Coatings. Wiley: Hoboken (2008)Lampe, Th, Eisenberg, S., Cabeo, E.R.: Plasma surface engineering in the automotive industry—trends and future prospective. Surf. Coat. Technol. 174–175, 1–7 (2003)Wang, Y., Jiang, S., Wang, M., Wang, S., Xiao, T.D., Strutt, P.R.: Abrasive wear characteristics of plasma sprayed nanostructured alumina/titania coatings. Wear 237, 176–185 (2000)Kabacoff, L.T.: Nanoceramic coatings exhibit much higher toughness and wear resistance than conventional coatings. AMPITAC Newslett. 6(1), 37–42 (2002)Wang, M., Shaw, L.L.: Effects of the powder manufacturing method on microstructure and wear performance of plasma sprayed alumina–titania coatings. Surf. Coat. Technol. 202, 34–44 (2007)Shaw, L.L., Goberman, D., Ren, R., Gell, M., Jing, S., Wang, Y., Xiao, T.D., Strutt, P.R.: The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions. Surf. Coat. Technol. 130, 1–8 (2000)Dahotre, N.B., Nayak, S.: Nanocoatings for engine application. Surf. Coat. Technol. 194(1), 58–67 (2005)Sathish, S., Geetha, M., Aruna, S.T., Balaji, N., Rajam, K.S., Asokamani, R.: Sliding wear behavior of plasma sprayed nanoceramic coatings for biomedical applications. Wear 271, 934–941 (2011)Pawlowski, L.: Finely grained nanometric and submicrometric coatings by thermal sparing: a review. Surf. Coat. Technol. 202, 4318–4328 (2008)Xiao, D., Wang, Y., Strutt, P.: Fabrication and evaluation of plasma sprayed nanostructured alumina–titania coatings with superior properties. Mater. Sci. Eng. 301, 80–89 (2001)Tjong, S.C., Chen, H.: Nanocrystalline materials and coatings. Mater. Sci. Eng. 45, 1–88 (2004)Fauchais, P., Montavon, G., Bertrand, G.: From powders to thermally sprayed coatings. J. Therm. Spray Technol. 19, 56–80 (2010)Lima, R.S., Marple, B.R.: Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J. Therm. Spray Technol. 16, 40–63 (2007)Fauchais, P., Etchart-Salas, R., Delbos, C., Tognonvi, M., Rat, V., Coudert, J.F., Chartier, T.: Suspension and solution plasma spraying of finely structured layers: potential application to SOFCs. J. Phys. D Appl. Phys. 40, 2394–2406 (2007)Ramachandran, K., Selvajaran, V., Ananthapadmanabhan, P.V., Sreekumar, K.P.: Microstructure, adhesion, micro hardness, abrasive wear resistance and electrical resistivity of the plasma sprayed alumina and alumina–titania coatings. Thin Solid Films 315, 144–152 (1998)Lee, S.W., Morillo, C., Lira-Olivares, J., Kim, S.H., Sekino, T., Niihara, K., Hockey, B.J.: Tribological and microstructural analysis of Al2O3/13TiO2 nanocomposites to use in femoral head of hip replacement. Wear 225, 1040–1044 (2003)Dejang, N., Watcharapasorn, A., Wirojupatump, S., Niranatlumpong, P., Jiansirisomboon, S.: Fabrication and properties of plasma-sprayed Al2O3/TiO2 composite coatings: a role of nano-sized TiO2 addition. Surf. Coat. Technol. 204, 1651–1657 (2010)Yimaz, S.: An evaluation of plasma sprayed coatings based on Al2O3 and Al2O3–13wt% TiO2 with bond coat on pure titanium substrate. Ceram. Int. 35, 2017–2022 (2009)Fervel, V., Normand, B., Coddet, C.: Tribological behavior of plasma sprayed Al2O3-based cermet coatings. Wear 230(1), 70–77 (1999)Vargas, F., Ageorges, H., Fauchais, P., López, M.E.: Mechanical and a tribological performance of Al2O3 coatings elaborated by flame and plasma spraying. Surf. Coat. Technol. 205, 1132–1136 (2010)Bacciochini, A., Ilavsky, J., Montavon, G., Denoirjean, A., Ben-ettouil, F., Valette, S., Fauchais, P., Wittmann-teneze, K.: Quantification of void network architectures of suspension plasma-sprayed (SPS) yttria-stabilized zirconia (YSZ) coatings using ultra-small-angle X-ray scattering (USAXS). Mater. Sci. Eng. 528, 91–102 (2010)ASTM International: ASTM G99-03: Standard test method for wear testing with a pin-on-disc apparatus. ASTM annual book of standards. ASTM International: West Conshohocken (2003)Lancaster, K.: The influence of substrate hardness on the formation and endurance of molybdenum disulphide films. Wear 10, 103–107 (1967)Fauchais, P., Rat, V., Delbos, C., Fazilleau, J., Coudert, J.F., Chartier, T., Bianchi, L.: Understanding of suspension plasma spraying of finely structured coatings for SOFC. IEEE Plasma Sci. 33(2), 920–930 (2005)Bannier, E., Vicent, M., Rayón, E., Benavente, R., Salvador, M.D., Sánchez, E.: Effect of TiO2 addition on the microstructure and nanomechanical properties of Al2O3 suspension plasma sprayed coatings. Appl. Surf. Sci. 316, 141–146 (2014)Darut, G., Klyatskina, E., Valette, S., Carles, P., Denoirjean, A., Montavon, G., Ageorges, H., Segovia, F., Salvador, M.D.: Architecture and phases composition of suspension plasma sprayed alumina–titania sub-micrometer-sized coatings. Mater. Lett. 67, 241–244 (2012)Fauchais, P., Montavon, G.: Latest developments in suspension and liquid precursor thermal spraying. J. Therm. Spray Technol. 19(1–2), 226–239 (2010)Darut, G., Ben-Ettouli, F., Denoirjean, A., Montavon, G., Ageourges, H., Fauchais, P.: Dry sliding behavior of sub-micrometer-sized suspension plasma sprayed ceramic oxide coatings. J. Therm. Spray Technol. 19, 275–285 (2010)Tingaud, O., Bacciochini, A., Montavon, G., Denoirjean, A., Fauchais, P.: Suspension DC plasma spraying of thick finely-structured ceramic coatings: process manufacturing mechanisms. Surf. Coat. Technol. 203, 2157–2161 (2009)Guesama, S., Bounazef, M., Nardin, P., Sahraoui, T.: Wear behavior of alumina–titania coatings: analysis of process and parameters. Ceram. Int. 32, 13–19 (2006)Espinosa-Fernández, L., Borrell, A., Salvador, M.D., Gutierrez-Gonzalez, C.F.: Sliding wear behavior of WC–Co–Cr3C2–VC composites fabricated by conventional and non-conventional techniques. Wear 307, 60–67 (2013)Zhang, J., Moslehy, F.A., Rice, S.L.: A model for friction in quasi-steady-state. Part I. Derivation. Wear 149, 1–12 (1991)Zhang, J., Moslehy, F.A., Rice, S.L.: A model for friction in quasi-steady-state sliding Part II. Numerical results and discussion. Wear 149, 13–25 (1991)Bolelli, G., Cannilo, V., Lusvarghi, L., Manfredini, T.: Wear behaviour of thermally sprayed ceramic oxide coatings. Wear 261, 1298–1315 (2006)Normand, B., Fervel, V., Coddet, C., Nikitine, V.: Tribological properties of plasma sprayed alumina–titania coatings: next term role and control of the microstructure. Surf. Coat. Technol. 123, 278–287 (2000)Hutchings, I.: Tribology: friction and wear of engineering materials. Mater. Des. 13, 187 (1992)Ahn, J., Hwang, B., Song, E.P., Lee, S., Kim, N.J.: Correlation of microstructure and wear resistance of Al2O3–TiO2 coatings plasma sprayed with nanopowders. Metall. Mater. Trans. A 37, 1851–1860 (2006)Erickson, L.C., Hawthorne, H.M., Troczynski, T.: Correlations between microstructural parameters, micromechanical properties and wear resistance of plasma sprayed ceramic coatings. Wear 250, 569–575 (2001)Song, E.P., Ahn, J., Lee, S., Kim, N.J.: Microstructure and wear resistance of nanostructured Al2O3–8 wt%TiO2 coatings plasma-sprayed with nanopowders. Surf. Coat. Technol. 201, 1309–1315 (2006)Tucker Jr., R.C.: ASM Handbook Volume 5A: Thermal Spray Technology. ASM International, Materials Park (2013)Stachowiack, G.W., Batchelor, A.: Engineering Tribology Handbook. Elsevier-Butterworth-Heineman: Oxford (2005)Fischer, T.E., Zhu, Z., Kim, H., Shin, D.S.: Genesis and role of wear debris in sliding wear of ceramics. Wear 245, 53–60 (2000)Lima, R.S., Moureau, C., Marple, B.R.: HVOF-sprayed coatings engineered from mixtures of nanostructured and submicron Al2O3–TiO2 powders: an enhanced wear performance. J. Therm. Spray Technol. 16, 866 (2007

    Influence of the feedstock characteristics on the microstructure and properties of Al2O3 TiO2 plasma-sprayed coatings

    Get PDF
    [EN] Atmospheric plasma spraying (APS) is an interesting technique to obtain nanostructured coatings due to its versatility, simplicity and relatively low cost. However, nanometric powders cannot be fed into the plume using conventional feeding systems, due to their low mass and poor flowability, and must be adequately reconstituted into sprayable micrometric agglomerates. In this work, Al2O3–13 wt.%TiO2 nanostructured and submicron-nanostructured powders were deposited using APS. The feedstocks were obtained by spray drying from two starting suspensions, prepared by mixing two commercial nanosuspensions of Al2O3 and TiO2, or by adding nanosized TiO2 and submicron-sized Al2O3 powders to water. The spray-dried granules were heat-treated to reduce their porosity and the resultant powders were fully characterized. Optimization of the deposition conditions enabled the reconstituted powders to be successfully deposited, yielding coatings that were well bonded to the substrate. The coating microstructure, characterized by SEM, was formed by semi-molten feedstock agglomerates surrounded by fully molten particles that act as a binder. Moreover, microhardness, adhesion, and tribological behavior were determined, and the impact of the granule characteristics on these properties was studied. It was found that changing the feedstock characteristics allowed controlling the coating quality and properties.This work has been supported by the Spanish Ministry of Science and Innovation (project MAT2009-14144-C03).Vicent, M.; Bannier, E.; Benavente Martínez, R.; Salvador Moya, MD.; Molina, T.; Moreno, R.; Sánchez, E. (2013). Influence of the feedstock characteristics on the microstructure and properties of Al2O3 TiO2 plasma-sprayed coatings. Surface and Coatings Technology. 220:74-79. https://doi.org/10.1016/j.surfcoat.2012.09.042S747922

    Experimental and numerical investigation of cavitation-induced erosion in thermal sprayed single splats

    Get PDF
    Hydraulic components are coated by thermal spraying to protect them against cavitation erosion. These coatings are built up by successive deposition of single splats. The behavior of a single splat under mechanical loading is still very vaguely understood. Yttria-stabilized zirconia (YSZ) and stainless-steel splats were obtained by plasma spraying onto stainless steel substrates. The velocity and temperature of particles upon impact were measured and the samples were subsequently exposed to cavitation erosion tests. An acoustic cavitation simulation estimated the water jet velocity and hammer stresses exerted by bubble collapse on the surface of the specimen. Although the results suggested that high stress levels resulted from cavitation loading, it was clear that weak adhesion interfaces played a crucial role in the accelerated cavitation-induced degradation.EPSRC (UK

    Microstructure and wear behaviour of powder and suspension hybrid Al2O3–YSZ coatings

    Get PDF
    Suspension based plasma sprayed coatings can yield superior microstructural and tribological properties compared to conventional powder based plasma sprayed coatings. This study investigates a new hybrid method, using simultaneous spraying from powder and suspension, to produce composite coatings using alumina and yttria stabilised zirconia (YSZ), with potentially excellent wear and thermal properties. Dry sliding wear showed the alumina suspension-YSZ suspension coating yielded half the specific wear rate of the alumina powder-YSZ suspension, explained by preferential gamma alumina formation and increased porosity in the latter. Both YSZ-containing samples showed superior toughness and wear rate than simple alumina powder and suspension coatings

    MRI-Based Radiomics Input for Prediction of 2-Year Disease Recurrence in Anal Squamous Cell Carcinoma

    Get PDF
    International audiencePurpose: Chemo-radiotherapy (CRT) is the standard treatment for non-metastatic anal squamous cell carcinomas (ASCC). Despite excellent results for T1-2 stages, relapses still occur in around 35% of locally advanced tumors. Recent strategies focus on treatment intensification, but could benefit from a better patient selection. Our goal was to assess the prognostic value of pre-therapeutic MRI radiomics on 2-year disease control (DC). Methods: We retrospectively selected patients with non-metastatic ASCC treated at the CHU Bordeaux and in the French FFCD0904 multicentric trial. Radiomic features were extracted from T2-weighted pre-therapeutic MRI delineated sequences. After random division between training and testing sets on a 2:1 ratio, univariate and multivariate analysis were performed on the training cohort to select optimal features. The correlation with 2-year DC was assessed using logistic regression models, with AUC and accuracy as performance gauges, and the prediction of disease-free survival using Cox regression and Kaplan-Meier analysis. Results: A total of 82 patients were randomized in the training (n = 54) and testing sets (n = 28). At 2 years, 24 patients (29%) presented relapse. In the training set, two clinical (tumor size and CRT length) and two radiomic features (FirstOrder_Entropy and GLCM_JointEnergy) were associated with disease control in univariate analysis and included in the model. The clinical model was outperformed by the mixed (clinical and radiomic) model in both the training (AUC 0.758 versus 0.825, accuracy of 75.9% versus 87%) and testing (AUC 0.714 versus 0.898, accuracy of 78.6% versus 85.7%) sets, which led to distinctive high and low risk of disease relapse groups (HR 8.60, p = 0.005). Conclusion: A mixed model with two clinical and two radiomic features was predictive of 2-year disease control after CRT and could contribute to identify high risk patients amenable to treatment intensification with view of personalized medicine
    corecore