213 research outputs found

    Application of Building Typologies for Modelling the Energy Balance of the Residential Building Stock

    Get PDF
    Building typologies can serve as a basis for analysing the national housing sector. During the TABULA project which was introducing or further developing building typologies in thirteen EU countries, six of the European partners have carried out model calculations which aim at imaging the energy consumption and estimating the energy saving potentials of their national residential building stocks (IWU / Germany, NOA / Greece, POLITO / Italy, VITO / Belgium, STU-K / Czech Republic, SBi / Denmark). The results show that the model calculations can provide plausible projections of the energy consumption of the national residential buildings stock. The fit of model calculations and national energy statistics is satisfactory, deviations can often be explained and corrected by adapting standard boundary conditions of the applied calculation models to more realistic values. In general, the analysis shows that building typologies can be a helpful tool for modelling the energy consumption of national building stocks and for carrying out scenario analysis beyond the TABULA project. The consideration of a set of representative buildings makes it possible to have a detailed view on various packages of measures for the complete buildings stock or for its sub-categories. The effects of different insulation measures at the respective construction elements as well as different heat supply measures including renewable energies can be considered in detail. The quality of future model calculations will depend very much on the availability of statistical data. For reliable scenario analysis information is necessary about the current state of the building stock (How many buildings and heating systems have been refurbished until now?) and about the current trends (How many buildings and heating systems are being refurbished every year?). The availability and regular update of the relevant statistical data will be an important basis for the development and evaluation of national climate protection strategies in the building secto

    Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    Full text link
    A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season

    Application of Building Typologies for Modelling the Energy Balance of the Residential Building Stock.

    Get PDF
    Building typologies can serve as a basis for analysing the national housing sector. During the TABULA project which was introducing or further developing building typologies in thirteen EU countries, six of the European partners have carried out model calculations which aim at imaging the energy consumption and estimating the energy saving potentials of their national residential building stocks (IWU / Germany, NOA / Greece, POLITO / Italy, VITO / Belgium, STU-K / Czech Republic, SBi / Denmark). The results show that the model calculations can provide plausible projections of the energy consumption of the national residential buildings stock. The fit of model calculations and national energy statistics is satisfactory, deviations can often be explained and corrected by adapting standard boundary conditions of the applied calculation models to more realistic values. In general, the analysis shows that building typologies can be a helpful tool for modelling the energy consumption of national building stocks and for carrying out scenario analysis beyond the TABULA project. The consideration of a set of representative buildings makes it possible to have a detailed view on various packages of measures for the complete buildings stock or for its sub-categories. The effects of different insulation measures at the respective construction elements as well as different heat supply measures including renewable energies can be considered in detail. The quality of future model calculations will depend very much on the availability of statistical data. For reliable scenario analysis information is necessary about the current state of the building stock (How many buildings and heating systems have been refurbished until now?) and about the current trends (How many buildings and heating systems are being refurbished every year?). The availability and regular update of the relevant statistical data will be an important basis for the development and evaluation of national climate protection strategies in the building sector

    Scenario Analyses Concerning Energy Efficiency and Climate Protection in Regional and National Residential Building Stocks. Examples from Nine European Countries. - EPISCOPE Synthesis Report No. 3

    Get PDF
    This report documents methodological aspects and selected results of the scenario analyses to assess refurbishment as well as energy saving processes and project future energy consumption.. It covers scenario calculations conducted for regional residential building stocks in Salzburg/Austria, the Comunidat Valenciana/Spain, the Piedmont Region/Italy, the national non-profit housing stock in the Netherlands as well as the national residential building stocks in Germany, England, Greece, Norway, and Slovenia. Thereby, the objective of the scenario analysis is not a prediction of future energy demand in the respective building stock. Rather, the objective is to show the potential future impact of predefined assumptions. This may help respective key actors and policy makers to decide on strategies and policies for transforming building stocks towards carbon dioxide neutrality

    Tracking of Energy Performance Indicators in Residential Building Stocks – Different Approaches and Common Results - EPISCOPE Synthesis Report No. 4

    Get PDF
    A central task of IEE EPISCOPE project was to carry out energy balance calculations and scenario analysis for national, regional or local residential building stocks against the background of energy saving and climate protection targets. The EPISCOPE Synthesis Report No. 4 documents the individual approaches of collecting information for the investigated residential building stocks as a foundation for building stock models and scenario calculations. Issues related to the availability of data and data quality are discussed, and concepts for a continuous monitoring (a regular data collection) are presented as a basis for a future tracking of energy performance in the observed building stocks

    Indoor Air Quality (IAQ) in Naturally-ventilated Primary Schools in the UK:Occupant-Related Factors

    Get PDF
    Indoor Air Quality (IAQ) is affected by Context, Occupant and Building (COB) related factors. This paper evaluates IAQ as a function of occupant-related factors including occupants' Adaptive Behaviours (ABs), occupancy patterns, occupant's CO2 generation rates and occupancy density. This study observed occupant-related factors of 805 children in 29 naturally-ventilated (NV) classrooms in UK primary schools during Non-Heating and Heating seasons. Occupant-related factors affecting IAQ include occupants' adaptive behaviours, occupancy patterns, occupants' CO2 generation rate and occupancy densities. Results of this study suggest that a classroom with high potentials for natural ventilation does not necessarily provide adequate IAQ, however, occupants’ good practice of ABs is also required. Average occupancy densities to have CO2 levels of 1000 ± 50 ppm are suggested to be 2.3 ± 0.05m2/p and 7.6 ± 0.25 m3/p. These values correspond to the classroom area of 62.1 ± 1.35 m2 and volume of 205.2 ± 6.75 m3 with a height of 3.3 m. Mean CO2 level is maintained below 900 ppm when all occupant-related factors are in the favour of IAQ, however, it exceeds 1300 ppm when none of the occupant-related factors are in favour of IAQ. It is shown that 17% of CO2 variations are explained by open area (m2), 14% by occupants' generation rates (cm3/s) and 11% by occupancy density (m3/p). IAQ is mostly affected by occupants’ adaptive behaviours than other occupant-related factors in naturally-ventilated classrooms

    Ventilation rates in naturally ventilated primary schools in the UK; Contextual, Occupant and Building-related (COB) factors

    Get PDF
    Indoor Air Quality (IAQ) in classrooms is assessed by CO2 levels and Ventilation Rates (VRs). Factors affecting VRs fall into Contextual, Occupant and Building (COB) related factors. This study investigates how VRs are affected by COB factors in 29 naturally-ventilated classrooms in the UK during Non-Heating and Heating seasons. Building-related factors classify classrooms with high or low potentials for natural ventilation, with 45% of classrooms having high potentials. Contextual factors including season, operative temperature (Top), outdoor temperature (Tout), ‘Top-Tout’ and air density can limit or increase VRs. Occupant-related factors classify occupant's good or poor practice of environmental adaptive behaviours. ‘Open area’ as a reflection of all COB factors is strongly correlated with ventilation rates. Results show that 12% and 19% of variations in ventilation rates are explained by open areas during non-heating and heating seasons, respectively. Findings highlight that to have VR of 8 ± 1.28 l/s.p during non-heating seasons and VR of 8 ± 1.07 l/s.p during heating seasons, average open areas of 3.8 m2 and 2 m2 are required, respectively. This difference can mostly be explained by temperature difference between inside and outside. Results show COB factors need to be considered holistically to maintain adequate VRs. Classrooms in which all COB factors are met provide average VR of 11 l/s.p and classrooms in which none of COB factors are met provide average VR is 3.1 l/s.p. This study highlights that 40% of classrooms according to EN 13779 and 80% of classrooms according to ASHRAE Standard fail to provide adequate VRs

    Strategies to improve energy and carbon efficiency of luxury hotels in Iran

    Get PDF
    Luxury hotels generate substantial carbon footprint and scholarly research is urgently required to better understand how it could be effectively mitigated. This study adopts a method of life cycle energy analysis (LCEA) to assess the energy and carbon performance of six luxury, five star, hotels located in Iran. The results of the energy and carbon assessment of luxury hotels in Iran are compared against the energy and carbon values reported in past hotel research. This current study finds that luxury hotels in Iran are up to 3–4 times more energy- and 7 times more carbon-intense than similar hotels examined in past research. Low cost of fossil fuels, international trade sanctions and the lack of governmental and corporate energy conservation targets discourage Iranian hoteliers from carbon footprint mitigation. To counteract poor energy and carbon efficiency of luxury hotels in Iran, it is important to relax economic sanctions, develop alternative energy sources, refine corporate energy conservation targets, regularly benchmark hotel energy performance and enable exchange of good practices amongst Iranian hoteliers

    Integration of the environmental management aspect in the optimization of the design and planning of energy systems

    Get PDF
    The increasing concerns regarding the environmental pollution derived from anthropogenic activities, such as the use of fossil fuels for power generation, has driven many interested parties to seek different alternatives, e.g. use of renewable energy sources, use of “cleaner” fuels and use of more effective technologies, in order to minimize and control the quantity of emissions that are produced during the life cycle of conventional energy sources. In addition to these alternatives, the use of an integrated procedure in which the environmental aspect will be taken into account during the design and planning of energy systems could provide a basis on which emissions reduction will be dealt with a life cycle approach. The work presented in this paper focuses on the examination of the possibilities of integrating the environmental aspects in the preliminary phase of the conventional design and planning of energy systems in conjunction with other parameters, such as financial cost, availability, capacity, location, etc. The integration of the environmental parameter to the design is carried out within a context where Eco-design concepts are applied. Due to the multi-parameter nature of the design procedure, the tools that are used are Life Cycle Analysis and Multi-criteria Analysis. The proposed optimization model examines and identifies optimum available options of the use of different energy sources and technologies for the production of electricity and/or heat by minimizing both the financial cost and the environmental impacts, with regard to a multiple objective optimization subject to a set of specific constraints. Implementation of the proposed model in the form of a case study for the island of Rhodes in Greece revealed that an optimized solution both cost and environmental-wise, would be an almost balanced participation of renewables and non-renewable energy sources in the energy mix
    corecore