21 research outputs found
Supernova neutrino oscillations: what do we understand?
We summarize our current understanding of the neutrino flavor conversions
inside a core collapse supernova, clarifying the important role played by the
"collective effects" in determining flavor conversion probabilities. The
potentially observable and spectra may help us identify
the neutrino mixing scenario, distinguish between primary flux models, and
learn more about the supernova explosion.Comment: 6 pages, 1 eps figure, jpconf.cls used. Talk given at TAUP 2009,
Rome, July 200
Physics potential of future supernova neutrino observations
We point out possible features of neutrino spectra from a future galactic
core collapse supernova that will enhance our understanding of neutrino mixing
as well as supernova astrophysics. We describe the neutrino flavor conversions
inside the star, emphasizing the role of "collective effects" that has been
appreciated and understood only very recently. These collective effects change
the traditional predictions of flavor conversion substantially, and enable the
identification of neutrino mixing scenarios through signatures like Earth
matter effects.Comment: 8 pages, uses jpconf.cls. Talk given at Neutrino 2008, Christchurch,
NZ. Some entries in Table 2 have been correcte
Conservative 3+1 General Relativistic Variable Eddington Tensor Radiation Transport Equations
We present conservative 3+1 general relativistic variable Eddington tensor
radiation transport equations, including greater elaboration of the momentum
space divergence (that is, the energy derivative term) than in previous work.
These equations are intended for use in simulations involving numerical
relativity, particularly in the absence of spherical symmetry. The independent
variables are the lab frame coordinate basis spacetime position coordinates and
the particle energy measured in the comoving frame. With an eye towards
astrophysical applications---such as core-collapse supernovae and compact
object mergers---in which the fluid includes nuclei and/or nuclear matter at
finite temperature, and in which the transported particles are neutrinos, we
pay special attention to the consistency of four-momentum and lepton number
exchange between neutrinos and the fluid, showing the term-by-term
cancellations that must occur for this consistency to be achieved.Comment: Version accepted by Phys. Rev.
Supernova neutrino three-flavor evolution with dominant collective effects
Neutrino and antineutrino fluxes from a core-collapse galactic supernova are
studied, within a representative three-flavor scenario with inverted mass
hierarchy and tiny 1-3 mixing. The initial flavor evolution is dominated by
collective self-interaction effects, which are computed in a full three-family
framework along an averaged radial trajectory. During the whole time span
considered (t=1-20 s), neutrino and antineutrino spectral splits emerge as
dominant features in the energy domain for the final, observable fluxes. Some
minor or unobservable three-family features (e.g., related to the
muonic-tauonic flavor sector) are also discussed for completeness. The main
results can be useful for SN event rate simulations in specific detectors.Comment: 22 pages, including 9 figures (1 section with 3 figures added).
Accepted for publication in JCA
Collective Flavor Oscillations Of Supernova Neutrinos and r-Process Nucleosynthesis
Neutrino-neutrino interactions inside core-collapse supernovae may give rise
to collective flavor oscillations resulting in swap between flavors. These
oscillations depend on the initial energy spectra, and relative fluxes or
relative luminosities of the neutrinos. It has been observed that departure
from energy equipartition among different flavors can give rise to one or more
sharp spectral swap over energy, termed as splits. We study the occurrence of
splits in the neutrino and antineutrino spectra, varying the initial relative
fluxes for different models of initial energy spectrum, in both normal and
inverted hierarchy. These initial relative flux variations give rise to several
possible split patterns whereas variation over different models of energy
spectra give similar results. We explore the effect of these spectral splits on
the electron fraction, , that governs r-process nucleosynthesis inside
supernovae. Since spectral splits modify the electron neutrino and antineutrino
spectra in the region where r-process is postulated to happen, and since the
pattern of spectral splits depends on the initial conditions of the spectra and
the neutrino mass hierarchy, we show that the condition required
for successful r-process nucleosynthesis will lead to constraints on the
initial spectral conditions, for a given neutrino mass hierarchy.Comment: 25 pages, 10 figures, added figure and improved discussion, result
unchanged. Version matches to published version of JCA
Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)
The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the
India-based Neutrino Observatory (INO) is designed to study the atmospheric
neutrinos and antineutrinos separately over a wide range of energies and path
lengths. The primary focus of this experiment is to explore the Earth matter
effects by observing the energy and zenith angle dependence of the atmospheric
neutrinos in the multi-GeV range. This study will be crucial to address some of
the outstanding issues in neutrino oscillation physics, including the
fundamental issue of neutrino mass hierarchy. In this document, we present the
physics potential of the detector as obtained from realistic detector
simulations. We describe the simulation framework, the neutrino interactions in
the detector, and the expected response of the detector to particles traversing
it. The ICAL detector can determine the energy and direction of the muons to a
high precision, and in addition, its sensitivity to multi-GeV hadrons increases
its physics reach substantially. Its charge identification capability, and
hence its ability to distinguish neutrinos from antineutrinos, makes it an
efficient detector for determining the neutrino mass hierarchy. In this report,
we outline the analyses carried out for the determination of neutrino mass
hierarchy and precision measurements of atmospheric neutrino mixing parameters
at ICAL, and give the expected physics reach of the detector with 10 years of
runtime. We also explore the potential of ICAL for probing new physics
scenarios like CPT violation and the presence of magnetic monopoles.Comment: 139 pages, Physics White Paper of the ICAL (INO) Collaboration,
Contents identical with the version published in Pramana - J. Physic
Damping of supernova neutrino transitions in stochastic shock-wave density profiles
Supernova neutrino flavor transitions during the shock wave propagation are
known to encode relevant information not only about the matter density profile
but also about unknown neutrino properties, such as the mass hierarchy (normal
or inverted) and the mixing angle theta_13. While previous studies have
focussed on "deterministic" density profiles, we investigate the effect of
possible stochastic matter density fluctuations in the wake of supernova shock
waves. In particular, we study the impact of small-scale fluctuations on the
electron (anti)neutrino survival probability, and on the observable spectra of
inverse-beta-decay events in future water-Cherenkov detectors. We find that
such fluctuations, even with relatively small amplitudes, can have significant
damping effects on the flavor transition pattern, and can partly erase the
shock-wave imprint on the observable time spectra, especially for
sin^2(theta_13) > O(10^-3).Comment: v2 (23 pages, including 6 eps figures). Typos removed, references
updated, matches the published versio
Effect of Collective Flavor Oscillations on the Diffuse Supernova Neutrino Background
Collective flavor oscillations driven by neutrino-neutrino self interaction
inside core-collapse supernovae have now been shown to bring drastic changes in
the resultant neutrino fluxes. This would in turn significantly affect the
diffuse supernova neutrino background (DSNB), created by all core-collapse
supernovae that have exploded in the past. In view of these collective effects,
we re-analyze the potential of detecting the DSNB in currently running and
planned large-scale detectors meant for detecting both electron neutrinos and
antineutrinos. The next generation detectors should be able to observe DSNB
fluxes. Under certain conducive conditions, one could learn about neutrino
parameters. For instance, it might be possible to determine the neutrino mass
hierarchy, even if theta_{13} is almost zero.Comment: Ver3 (24 pages, 4 figures and 4 tables): Reference added. Figure 1
corrected. Misprints corrected. Acknowledgment added. No changes in results.
Supercedes the version published in JCA
Theta_13: phenomenology, present status and prospect
The leptonic mixing angle theta_13 is currently a high-priority topic in the
field of neutrino physics, with five experiments under way, searching for
neutrino oscillations induced by this angle. We review the phenomenology of
theta_13 and discuss the information from present global oscillation data. A
description of the upcoming reactor and accelerator experiments searching for a
non-zero value of theta_13 is given, and we evaluate the sensitivity reach
within the next few years.Comment: Topical review, 55 pages, 23 figures, v2: various minor improvements,
references added, new section 6, matches version to appear in J. Phys.
