15,347 research outputs found

    Effective Superpotentials for SO/Sp with Flavor from Matrix Models

    Get PDF
    We study matrix models related to SO/SpSO/Sp gauge theories with flavors. We give the effective superpotentials for gauge theories with arbitrary tree level superpotential up to first instanton level. For quartic tree level superpotential we obtained exact one-cut solution. We also derive Seiberg-Witten curve for these gauge theories from matrix model argument.Comment: 17pp,2 figures, v2;refs added and to appear in MPL

    Origin of Ferromagnetism and its pressure and doping dependence in Tl2_{2}Mn2_{2}O7_{7}

    Get PDF
    Using NMTO-{\it downfolding} technique, we explore and establish the origin of ferromagnetism in the pyrochlore system, Tl2_{2}Mn2_{2}O7_{7}. It is found to be driven by hybridization induced spin-polarization of the delocalized charge carriers derived from Tl-ss and O-pp states. The mean-field estimate of the ferromagnetic transition temperature, Tc_c, estimated using computed exchange integrals are found to be in good agreement with the measurements. We find an enhancement of Tc_{c} for moderate doping with nonmagnetic Sb and a suppression of Tc_{c} upon application of pressure, both in agreement with experimental findings.Comment: Accepted for publication in PR

    Phase Diagram of a Classical Fluid in a Quenched Random Potential

    Full text link
    We consider the phase diagram of a classical fluid in the presence of a random pinning potential of arbitrary strength. Introducing replicas for averaging over the quenched disorder, we use the hypernetted chain approximation to calculate the correlations in the replicated liquid. The freezing transition of the liquid into a nearly crystalline state is studied using a density functional approach, and the liquid-to-glass transition is studied using a phenomenological replica symmetry breaking approach introduced by Mezard and Parisi. The first-order liquid-to-crystal transition is found to change to a continuous liquid-to-glass transition as the strength of the disorder is increased above a threshold value.Comment: 7 pages, 4 figures, to appear in EuroPhysics Letter

    NiS - An unusual self-doped, nearly compensated antiferromagnetic metal

    Get PDF
    NiS, exhibiting a text-book example of a first-order transition with many unusual properties at low temperatures, has been variously described in terms of conflicting descriptions of its ground state during the past several decades. We calculate these physical properties within first-principle approaches based on the density functional theory and conclusively establish that all experimental data can be understood in terms of a rather unusual ground state of NiS that is best described as a self-doped, nearly compensated, antiferromagnetic metal, resolving the age-old controversy. We trace the origin of this novel ground state to the specific details of the crystal structure, band dispersions and a sizable Coulomb interaction strength that is still sub-critical to drive the system in to an insulating state. We also show how the specific antiferromagnetic structure is a consequence of the less-discussed 90 degree and less than 90 degree superexchange interactions built in to such crystal structures

    Mass Deformations of Super Yang-Mills Theories in D= 2+1, and Super-Membranes: A Note

    Full text link
    Mass deformations of supersymmetric Yang-Mills theories in three spacetime dimensions are considered. The gluons of the theories are made massive by the inclusion of a non-local gauge and Poincare invariant mass term due to Alexanian and Nair, while the matter fields are given standard Gaussian mass-terms. It is shown that the dimensional reduction of such mass deformed gauge theories defined on R3R^3 or R×T2R\times T^2 produces matrix quantum mechanics with massive spectra. In particular, all known massive matrix quantum mechanical models obtained by the deformations of dimensional reductions of minimal super Yang-Mills theories in diverse dimensions are shown also to arise from the dimensional reductions of appropriate massive Yang-Mills theories in three spacetime dimensions. Explicit formulae for the gauge theory actions are provided.Comment: 20 Page

    Certifying non-existence of undesired locally stable equilibria in formation shape control problems

    Full text link
    A fundamental control problem for autonomous vehicle formations is formation shape control, in which the agents must maintain a prescribed formation shape using only information measured or communicated from neighboring agents. While a large and growing literature has recently emerged on distance-based formation shape control, global stability properties remain a significant open problem. Even in four-agent formations, the basic question of whether or not there can exist locally stable incorrect equilibrium shapes remains open. This paper shows how this question can be answered for any size formation in principle using semidefinite programming techniques for semialgebraic problems, involving solutions sets of polynomial equations, inequations, and inequalities.Comment: 6 pages; to appear in the 2013 IEEE Multiconference on Systems and Contro

    Amorphization of Vortex Matter and Reentrant Peak Effect in YBa2_2Cu3_3O7δ_{7-\delta}

    Full text link
    The peak effect (PE) has been observed in a twinned crystal of YBa2_2Cu3_3O7δ_{7-\delta} for H\parallelc in the low field range, close to the zero field superconducting transition temperature (Tc_c(0)) . A sharp depinning transition succeeds the peak temperature Tp_p of the PE. The PE phenomenon broadens and its internal structure smoothens out as the field is increased or decreased beyond the interval between 250 Oe and 1000 Oe. Moreover, the PE could not be observed above 10 kOe and below 20 Oe. The locus of the Tp_p(H) values shows a reentrant characteristic with a nose like feature located at Tp_p(H)/Tc_c(0)\approx0.99 and H\approx100 Oe (where the FLL constant a0_0\approxpenetration depth λ\lambda). The upper part of the PE curve (0.5 kOe<<H<<10 kOe) can be fitted to a melting scenario with the Lindemann number cL_L\approx0.25. The vortex phase diagram near Tc_c(0) determined from the characteristic features of the PE in YBa2_2Cu3_3O7δ_{7-\delta}(H\parallelc) bears close resemblance to that in the 2H-NbSe2_2 system, in which a reentrant PE had been observed earlier.Comment: 15 pages and 7 figure

    Quiver Gauge Theory of Nonabelian Vortices and Noncommutative Instantons in Higher Dimensions

    Full text link
    We construct explicit BPS and non-BPS solutions of the Yang-Mills equations on the noncommutative space R^{2n}_\theta x S^2 which have manifest spherical symmetry. Using SU(2)-equivariant dimensional reduction techniques, we show that the solutions imply an equivalence between instantons on R^{2n}_\theta x S^2 and nonabelian vortices on R^{2n}_\theta, which can be interpreted as a blowing-up of a chain of D0-branes on R^{2n}_\theta into a chain of spherical D2-branes on R^{2n} x S^2. The low-energy dynamics of these configurations is described by a quiver gauge theory which can be formulated in terms of new geometrical objects generalizing superconnections. This formalism enables the explicit assignment of D0-brane charges in equivariant K-theory to the instanton solutions.Comment: 45 pages, 4 figures; v2: minor correction
    corecore