481 research outputs found
A population of luminous accreting black holes with hidden mergers
Major galaxy mergers are thought to play an important part in fuelling the
growth of supermassive black holes. However, observational support for this
hypothesis is mixed, with some studies showing a correlation between merging
galaxies and luminous quasars and others showing no such association. Recent
observations have shown that a black hole is likely to become heavily obscured
behind merger-driven gas and dust, even in the early stages of the merger, when
the galaxies are well separated (5 to 40 kiloparsecs). Merger simulations
further suggest that such obscuration and black-hole accretion peaks in the
final merger stage, when the two galactic nuclei are closely separated (less
than 3 kiloparsecs). Resolving this final stage requires a combination of
high-spatial-resolution infrared imaging and high-sensitivity hard-X-ray
observations to detect highly obscured sources. However, large numbers of
obscured luminous accreting supermassive black holes have been recently
detected nearby (distances below 250 megaparsecs) in X-ray observations. Here
we report high-resolution infrared observations of hard-X-ray-selected black
holes and the discovery of obscured nuclear mergers, the parent populations of
supermassive-black-hole mergers. We find that obscured luminous black holes
(bolometric luminosity higher than 2x10^44 ergs per second) show a significant
(P<0.001) excess of late-stage nuclear mergers (17.6 per cent) compared to a
sample of inactive galaxies with matching stellar masses and star formation
rates (1.1 per cent), in agreement with theoretical predictions. Using
hydrodynamic simulations, we confirm that the excess of nuclear mergers is
indeed strongest for gas-rich major-merger hosts of obscured luminous black
holes in this final stage.Comment: To appear in the 8 November 2018 issue of Nature. This is the
authors' version of the wor
Managing the climate commons at the nexus of ecology, behaviour and economics
Sustainably managing coupled ecological–economic systems requires not only an understanding of the environmental factors that affect them, but also knowledge of the interactions and feedback cycles that operate between resource dynamics and activities attributable to human intervention. The socioeconomic dynamics, in turn, call for an investigation of the behavioural drivers behind human action. We argue that a multidisciplinary approach is needed in order to tackle the increasingly pressing and intertwined environmental challenges faced by modern societies. Academic contributions to climate change policy have been constrained by methodological and terminological differences, so we discuss how programmes aimed at cross-disciplinary education and involvement in governance may help to unlock scholars' potential to propose new solutions
Elevated CO2 degassing rates prevented the return of Snowball Earth during the Phanerozoic
The Cryogenian period (~720–635 Ma) is marked by extensive Snowball Earth glaciations. These have previously been linked to CO₂ draw-down, but the severe cold climates of the Cryogenian have never been replicated during the Phanerozoic despite similar, and sometimes more dramatic changes to carbon sinks. Here we quantify the total CO₂ input rate, both by measuring the global length of subduction zones in plate tectonic reconstructions, and by sea-level inversion. Our results indicate that degassing rates were anomalously low during the Late Neoproterozoic, roughly doubled by the Early Phanerozoic, and remained comparatively high until the Cenozoic. Our carbon cycle modelling identifies the Cryogenian as a unique period during which low surface temperature was more easily achieved, and shows that the shift towards greater CO₂ input rates after the Cryogenian helped prevent severe glaciation during the Phanerozoic. Such a shift appears essential for the development of complex animal life
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
A comparison of the effects of physical and chemical mutagens in sesame (Sesamum indicum L.)
Three sesame genotypes (Rama, SI 1666 and IC 21706) were treated with physical (γ-rays: 200 Gy, 400 Gy or 600 Gy) or chemical (ethyl methane sulphonate, EMS: 0.5%, 1.0%, 1.5% or 2.0%) mutagens and their mutagenic effectiveness and efficiency were estimated in the M 2 generation. The M 3 generation was used to identify the most effective mutagen and dose for induction of mutations. The average effectiveness of EMS was much higher than γ-rays. The lowest dose of γ-rays (200 Gy) and the lowest concentration of EMS (0.5%) showed the highest mutagenic efficiency in all genotypes. Analysis of the M 3 generation data based on parameters such as the variance ratio and the difference in residual variances derived from the model of Montalván and Ando indicated that 0.5% concentration of EMS was the most effective treatment for inducing mutations
A Crucial Role of Flagellin in the Induction of Airway Mucus Production by Pseudomonas aeruginosa
Pseudomonas aeruginosa is an opportunistic pathogen involved in nosocomial infections. Flagellin is a P. aeruginosa virulence factor involved in host response to this pathogen. We examined the role of flagellin in P. aeruginosa-induced mucus secretion. Using a mouse model of pulmonary infection we showed that PAK, a wild type strain of P. aeruginosa, induced airway mucus secretion and mucin muc5ac expression at higher levels than its flagellin-deficient mutant (ΔFliC). PAK induced expression of MUC5AC and MUC2 in both human airway epithelial NCI-H292 cell line and in primary epithelial cells. In contrast, ΔFliC infection had lower to no effect on MUC5AC and MUC2 expressions. A purified P. aeruginosa flagellin induced MUC5AC expression in parallel to IL-8 secretion in NCI-H292 cells. Accordingly, ΔFliC mutant stimulated IL-8 secretion at significantly lower levels compared to PAK. Incubation of NCI-H292 cells with exogenous IL-8 induced MUC5AC expression and pre-incubation of these cells with an anti-IL-8 antibody abrogated flagellin-mediated MUC5AC expression. Silencing of TLR5 and Naip, siRNA inhibited both flagellin-induced MUC5AC expression and IL-8 secretion. Finally, inhibition of ERK abolished the expression of both PAK- and flagellin-induced MUC5AC. We conclude that: (i) flagellin is crucial in P. aeruginosa-induced mucus hyper-secretion through TLR5 and Naip pathways; (ii) this process is mediated by ERK and amplified by IL-8. Our findings help understand the mechanisms involved in mucus secretion during pulmonary infectious disease induced by P. aeruginosa, such as in cystic fibrosis
Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges
The Indo-Burman mountain rangesmarkthe boundary between the Indian and Eurasian plates, north of the Sumatra–Andaman subduction zone. Whether subduction still occurs along this subaerial section of the plate boundary, with 46mm/yr of highly oblique motion, is contentious. About 21mm/yr of shear motion is taken up along the Sagaing Fault, on the eastern margin of the deformation zone. It has been suggested that the remainder of the relative motion is taken up largely or entirely by horizontal strike-slip faulting and that subduction has stopped. Here we present GPS measurements of plate motions in Bangladesh, combined with measurements from Myanmar and northeast India, taking advantage of a more than 300 km subaerial accretionary prism spanning the Indo-Burman Ranges to the Ganges–Brahmaputra Delta. They reveal 13–17mm/yr of plate convergence on an active, shallowly dipping and locked megathrust fault. Most of the strike-slip motion occurs on a few steep faults, consistent with patterns of strain partitioning in subduction zones. Our results strongly suggest that subduction in this region is active, despite the highly oblique plate motion and thick sediments. We suggest that the presence of a locked megathrust plate boundary represents an underappreciated hazard in one of the most densely populated regions of the world
Transcript levels of ten caste-related genes in adult diploid males of Melipona quadrifasciata (Hymenoptera, Apidae) - A comparison with haploid males, queens and workers
In Hymenoptera, homozygosity at the sex locus results in the production of diploid males. In social species, these pose a double burden by having low fitness and drawing resources normally spent for increasing the work force of a colony. Yet, diploid males are of academic interest as they can elucidate effects of ploidy (normal males are haploid, whereas the female castes, the queens and workers, are diploid) on morphology and life history. Herein we investigated expression levels of ten caste-related genes in the stingless bee Melipona quadrifasciata, comparing newly emerged and 5-day-old diploid males with haploid males, queens and workers. In diploid males, transcript levels for dunce and paramyosin were increased during the first five days of adult life, while those for diacylglycerol kinase and the transcriptional co-repressor groucho diminished. Two general trends were apparent, (i) gene expression patterns in diploid males were overall more similar to haploid ones and workers than to queens, and (ii) in queens and workers, more genes were up-regulated after emergence until day five, whereas in diploid and especially so in haploid males more genes were down-regulated. This difference between the sexes may be related to longevity, which is much longer in females than in males
Early Oncologic Failure after Robot-Assisted Radical Cystectomy: Results from the International Robotic Cystectomy Consortium
PURPOSE:
We sought to investigate the prevalence and variables associated with early oncologic failure.
MATERIALS AND METHODS:
We retrospectively reviewed the IRCC (International Radical Cystectomy Consortium) database of patients who underwent robot-assisted radical cystectomy since 2003. The final cohort comprised a total of 1,894 patients from 23 institutions in 11 countries. Early oncologic failure was defined as any disease relapse within 3 months of robot-assisted radical cystectomy. All institutions were surveyed for the pneumoperitoneum pressure used, breach of oncologic surgical principles, and techniques of specimen and lymph node removal. A multivariate model was fit to evaluate predictors of early oncologic failure. The Kaplan-Meier method was applied to depict disease specific and overall survival, and Cox proportional regression analysis was used to evaluate predictors of disease specific and overall survival.
RESULTS:
A total of 305 patients (22%) experienced disease relapse, which was distant in 220 (16%), local recurrence in 154 (11%), peritoneal carcinomatosis in 17 (1%) and port site recurrence in 5 (0.4%). Early oncologic failure developed in 71 patients (5%) at a total of 10 institutions. The incidence of early oncologic failure decreased from 10% in 2006 to 6% in 2015. On multivariate analysis the presence of any complication (OR 2.87, 95% CI 1.38–5.96, p = 0.004), pT3 or greater disease (OR 3.73, 95% CI 2.00–6.97, p <0.001) and nodal involvement (OR 2.14, 95% CI 1.21–3.80, p = 0.008) was a significant predictor of early oncologic failure. Patients with early oncologic failure demonstrated worse disease specific and overall survival (23% and 13%, respectively) at 1 and 3 years compared to patients who experienced later or no recurrences (log rank p <0.001).
CONCLUSIONS:
The incidence of early oncologic failure following robot-assisted radical cystectomy has decreased with time. Disease related rather than technical related factors have a major role in early oncologic failure after robot-assisted radical cystectomy
Interactions between β-Catenin and the HSlo Potassium Channel Regulates HSlo Surface Expression
- …
