589 research outputs found
Recommended from our members
Improved Constraints on Sterile Neutrino Mixing from Disappearance Searches in the MINOS, MINOS+, Daya Bay, and Bugey-3 Experiments.
Searches for electron antineutrino, muon neutrino, and muon antineutrino disappearance driven by sterile neutrino mixing have been carried out by the Daya Bay and MINOS+ collaborations. This Letter presents the combined results of these searches, along with exclusion results from the Bugey-3 reactor experiment, framed in a minimally extended four-neutrino scenario. Significantly improved constraints on the θ_{μe} mixing angle are derived that constitute the most constraining limits to date over five orders of magnitude in the mass-squared splitting Δm_{41}^{2}, excluding the 90% C.L. sterile-neutrino parameter space allowed by the LSND and MiniBooNE observations at 90% CL_{s} for Δm_{41}^{2}<13 eV^{2}. Furthermore, the LSND and MiniBooNE 99% C.L. allowed regions are excluded at 99% CL_{s} for Δm_{41}^{2}<1.6 eV^{2}
Appearance of E1: A226V mutant Chikungunya virus in Coastal Karnataka, India during 2008 outbreak
Chikungunya has resurged in the form of unprecedented explosive epidemic in 2006 after a long gap in India affecting 1.39 million of persons. The disease continued for the next two consecutive years affecting 59,535 and 64,548 persons during 2007 and 2008 respectively. The 2008 outbreak being the second largest among these three years the information regarding the etiology and the mutations involved are useful for further control measures. Among the 2008 outbreaks the Coastal Karnataka accounts for the 46,510 persons. An in-depth investigation of Chikungunya epidemic of Coastal Karnataka, India, 2008 by serology, virus isolation, RT-PCR and genome sequencing revealed the presence and continued circulation of A226V mutant Chikungunya virus. The appearance of this mutant virus was found to be associated with higher prevalence of vector Aedes albopictus and the geographical proximity of coastal Karnataka with the adjoining Kerala state. This is the first report regarding the appearance of this mutation in Karnataka state of India. The present study identified the presence and association of A226V mutant virus with Chikungunya outbreak in India during 2008
Development and evaluation of one step single tube multiplex RT-PCR for rapid detection and typing of dengue viruses
<p>Abstract</p> <p>Background</p> <p>Dengue is emerging as a major public health concern in many parts of the world. The development of a one-step, single tube, rapid, and multiplex reverse transcription polymerase chain reaction (M-RT-PCR) for simultaneous detection and typing of dengue virus using serotype specific primers during acute phase of illness is reported.</p> <p>Results</p> <p>An optimal assay condition with zero background was established having no cross-reaction with closely related members of flavivirus (Japanese encephalitis, West Nile, Yellow fever) and alphavirus (Chikungunya). The feasibility of M-RT-PCR assay for clinical diagnosis was validated with 620 acute phase dengue patient sera samples of recent epidemics in India. The comparative evaluation <it>vis a vis </it>conventional virus isolation revealed higher sensitivity. None of the forty healthy serum samples screened in the present study revealed any amplification, thereby establishing specificity of the reported assay for dengue virus only.</p> <p>Conclusion</p> <p>These findings clearly suggested that M-RT-PCR assay reported in the present study is the rapid and cost-effective method for simultaneous detection as well as typing of the dengue virus in acute phase patient serum samples. Thus, the M-RT-PCR assay developed in this study will serve as a very useful tool for rapid diagnosis and typing of dengue infections in endemic areas.</p
Development and evaluation of one step single tube multiplex RT-PCR for rapid detection and typing of dengue viruses
A <i>Tbc1d1</i><sup>Ser231Ala</sup>-knockin mutation partially impairs AICAR- but not exercise-induced muscle glucose uptake in mice
Aims/hypothesis: TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) is a Rab GTPase-activating protein (RabGAP) that has been implicated in regulating GLUT4 trafficking. TBC1D1 can be phosphorylated by the AMP-activated protein kinase (AMPK) on Ser(231), which consequently interacts with 14-3-3 proteins. Given the key role for AMPK in regulating insulin-independent muscle glucose uptake, we hypothesised that TBC1D1-Ser(231) phosphorylation and/or 14-3-3 binding may mediate AMPK-governed glucose homeostasis.Methods: Whole-body glucose homeostasis and muscle glucose uptake were assayed in mice bearing a Tbc1d1 (Ser231Ala)-knockin mutation or harbouring skeletal muscle-specific Ampkα1/α2 (also known as Prkaa1/2) double-knockout mutations in response to an AMPK-activating agent, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). Exercise-induced muscle glucose uptake and exercise capacity were also determined in the Tbc1d1 (Ser231Ala)-knockin mice.Results: Skeletal muscle-specific deletion of Ampkα1/a2 in mice prevented AICAR-induced hypoglycaemia and muscle glucose uptake. The Tbc1d1 (Ser231Ala)-knockin mutation also attenuated the glucose-lowering effect of AICAR in mice. Glucose uptake and cell surface GLUT4 content were significantly lower in muscle isolated from the Tbc1d1 (Ser231Ala)-knockin mice upon stimulation with a submaximal dose of AICAR. However, this Tbc1d1 (Ser231Ala)-knockin mutation neither impaired exercise-induced muscle glucose uptake nor affected exercise capacity in mice.Conclusions/interpretation: TBC1D1-Ser(231) phosphorylation and/or 14-3-3 binding partially mediates AMPK-governed glucose homeostasis and muscle glucose uptake in a context-dependent manner.</p
Meta-analysis of the detection of plant pigment concentrations using hyperspectral remotely sensed data
Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550–560nm) and red edge (680–750nm) regions; chlorophyll b on the red, (630–660nm), red edge (670–710nm) and the near-infrared (800–810nm); carotenoids on the 500–580nm region; and anthocyanins on the green (550–560nm), red edge (700–710nm) and near-infrared (780–790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a
Alignment of the ALICE Inner Tracking System with cosmic-ray tracks
37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe
Evaluation of Software Product Quality Metrics
Computing devices and associated software govern everyday life, and form the
backbone of safety critical systems in banking, healthcare, automotive and
other fields. Increasing system complexity, quickly evolving technologies and
paradigm shifts have kept software quality research at the forefront. Standards
such as ISO's 25010 express it in terms of sub-characteristics such as
maintainability, reliability and security. A significant body of literature
attempts to link these subcharacteristics with software metric values, with the
end goal of creating a metric-based model of software product quality. However,
research also identifies the most important existing barriers. Among them we
mention the diversity of software application types, development platforms and
languages. Additionally, unified definitions to make software metrics truly
language-agnostic do not exist, and would be difficult to implement given
programming language levels of variety. This is compounded by the fact that
many existing studies do not detail their methodology and tooling, which
precludes researchers from creating surveys to enable data analysis on a larger
scale. In our paper, we propose a comprehensive study of metric values in the
context of three complex, open-source applications. We align our methodology
and tooling with that of existing research, and present it in detail in order
to facilitate comparative evaluation. We study metric values during the entire
18-year development history of our target applications, in order to capture the
longitudinal view that we found lacking in existing literature. We identify
metric dependencies and check their consistency across applications and their
versions. At each step, we carry out comparative evaluation with existing
research and present our results.Comment: Published in: Molnar AJ., Neam\c{t}u A., Motogna S. (2020) Evaluation
of Software Product Quality Metrics. In: Damiani E., Spanoudakis G.,
Maciaszek L. (eds) Evaluation of Novel Approaches to Software Engineering.
ENASE 2019. Communications in Computer and Information Science, vol 1172.
Springer, Cham. https://doi.org/10.1007/978-3-030-40223-5_
Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation
Parity-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the system’s orbital momentum axis. We investigate a three-particle azimuthal correlator which is a P even observable, but directly sensitive to the charge separation effect. We report measurements of charged hadrons near center-of-mass rapidity with this observable in Au+Au and Cu+Cu collisions at √sNN=200 GeV using the STAR detector. A signal consistent with several expectations from the theory is detected. We discuss possible contributions from other effects that are not related to parity violation
Appearance of EI: A226V mutant Chikungunya virus in Coastal Karnataka, India during 2008 outbreak
- …
