2,306 research outputs found

    Memcapacitive Devices in Logic and Crossbar Applications

    Get PDF
    Over the last decade, memristive devices have been widely adopted in computing for various conventional and unconventional applications. While the integration density, memory property, and nonlinear characteristics have many benefits, reducing the energy consumption is limited by the resistive nature of the devices. Memcapacitors would address that limitation while still having all the benefits of memristors. Recent work has shown that with adjusted parameters during the fabrication process, a metal-oxide device can indeed exhibit a memcapacitive behavior. We introduce novel memcapacitive logic gates and memcapacitive crossbar classifiers as a proof of concept that such applications can outperform memristor-based architectures. The results illustrate that, compared to memristive logic gates, our memcapacitive gates consume about 7x less power. The memcapacitive crossbar classifier achieves similar classification performance but reduces the power consumption by a factor of about 1,500x for the MNIST dataset and a factor of about 1,000x for the CIFAR-10 dataset compared to a memristive crossbar. Our simulation results demonstrate that memcapacitive devices have great potential for both Boolean logic and analog low-power applications

    The evolution of moment generating functions for the Wright Fisher model of population genetics

    Full text link
    We derive and apply a partial differential equation for the moment generating function of the Wright-Fisher model of population genetics

    Improving Efficiency in Convolutional Neural Network with Multilinear Filters

    Full text link
    The excellent performance of deep neural networks has enabled us to solve several automatization problems, opening an era of autonomous devices. However, current deep net architectures are heavy with millions of parameters and require billions of floating point operations. Several works have been developed to compress a pre-trained deep network to reduce memory footprint and, possibly, computation. Instead of compressing a pre-trained network, in this work, we propose a generic neural network layer structure employing multilinear projection as the primary feature extractor. The proposed architecture requires several times less memory as compared to the traditional Convolutional Neural Networks (CNN), while inherits the similar design principles of a CNN. In addition, the proposed architecture is equipped with two computation schemes that enable computation reduction or scalability. Experimental results show the effectiveness of our compact projection that outperforms traditional CNN, while requiring far fewer parameters.Comment: 10 pages, 3 figure
    corecore