185 research outputs found
Functional analysis of the mouse neurochondrin gene
Thesis (Ph. D. in Agriculture)--University of Tsukuba, (A), no. 3360, 2004.3.25Includes bibliographical reference
Genetic regulation of pituitary gland development in human and mouse
Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke’s pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans
Improved sensitivity and specificity for citrin deficiency using selected amino acids and acylcarnitines in the newborn screening
Citrin deficiency is an autosomal recessive disorder caused by a defect of citrin resulting from mutations in the SLC25A13 gene. Intrahepatic cholestasis and various metabolic abnormalities, including hypoglycemia, galactosemia, citrullinemia, and hyperammonemia may be present in neonates or infants in the “neonatal intrahepatic cholestasis caused by citrin deficiency” (NICCD) form of the disease. Because at present, newborn screening (NBS) for citrin deficiency using citrulline levels in dried blood spots (DBS) can only detect some of the patients, we tried to develop a new evaluation system to more reliably detect newborns with citrin deficiency utilizing parameters already in place in present NBS methods. To achieve this goal, we re-analyzed NBS profiles of amino acids and acylcarnitines in 96 NICCD patients, who were diagnosed through selective screening or positive family history. Hereby, we identified the combined evaluation of arginine (Arg), citrulline (Cit), isoleucine+leucine (Ile + Leu), tyrosine (Tyr), free carnitine (C0) / glutarylcarnitine (C5-DC) ratio in DBS as potentially sensitive to diagnose citrin deficiency in pre-symptomatic newborns. In particular, a scoring system using threshold levels for Arg (≥9 μmol/L), Cit (≥ 39 μmol/L), Ile + Leu (≥ 99 μmol/L), Tyr (≥ 96 μmol/L) and C0/C5-DC ratio (≥327) was significantly effective to detect newborns who later developed NICCD, and could thus be implemented in existing NBS programs at no extra analytical costs whenever citrin deficiency is considered to become a novel target disease.journal articl
KAT6B-related disorder in a patient with a novel frameshift variant (c.3925dup)
Heterozygous pathogenic variants in the KAT6B gene, which encodes lysine acetyltransferase 6B, have been identified in patients with congenital rare disorders, including genitopatellar syndrome and Say-Barber-Biesecker-Young-Simpson syndrome. Herein, we report another Japanese patient with a KAT6B-related disorder and a novel de novo heterozygous variant in exon 18 of KAT6B [c.3925dup, p.(Glu1309fs*33)], providing further evidence that truncating variants in exon 17 and in the proximal region of exon 18 are associated with genitopatellar syndrome-like phenotypes
A rare non-Robertsonian translocation involving chromosomes 15 and 21
CONTEXTO:Translocações robertsonianas (TR) estão entre os rearranjos estruturais balanceados mais comuns em humanos e compreendem a fusão da cromatina completa do braço longo de dois cromossomos acrocêntricos. No entanto, são raras as translocações não Robertsonianas envolvendo esses cromossomos.RELATO DE CASO:Nós descrevemos uma translocação não balanceada de novo envolvendo os cromossomos 15 e 21. A recém-nascida era filha de uma mãe de 29 anos e de um pai de 42 anos, casal não consanguíneo. Os achados clínicos levaram ao diagnóstico de síndrome de Down (SD) com defeitos cardíacos congênitos graves (persistência do canal arterial e defeito do septo atrioventricular completo), além de baixos comprimento e peso ao nascimento (< 5o e < 10o percentil em curvas de medidas específicas para SD, respectivamente). A análise citogenética convencional revelou o cariótipo 46,XX,der(15)(15pter→15q26.2CONTEXT:Robertsonian translocations (RT) are among the most common balanced structural rearrangements in humans and comprise complete chromatin fusion of the long arm of two acrocentric chromosomes. Nevertheless, non-Robertsonian translocation involving these chromosomes is a rare event.CASE REPORT:We report a de novo unbalanced translocation involving chromosomes 15 and 21. The newborn was the daughter of a 29-year-old mother and a 42-year-old father. The couple was non-consanguineous. Clinical findings led to the diagnosis of Down syndrome (DS) with severe congenital heart defects (persistent arterial duct, and complete atrioventricular septal defect), as well as low birth length and weight (< 5th and < 10th percentile, respectively, based on specific measurement curves for DS). Conventional cytogenetic analysis revealed the karyotype 46,XX,der(15)(15pter→15q26.2Universidade Estadual Paulista Instituto de Biociencias Department of GeneticsUniversidade de Sao Paulo Faculdade de Medicina de Ribeirao Preto Department of GeneticsUniversidade Estadual Paulista Instituto de Biociencias Department of Genetic
Maternally derived 15q11.2-q13.1 duplication and H19-DMR hypomethylation in a patient with Silver?Russell syndrome
Silver?Russell syndrome (SRS) is a congenital developmental disorder characterized by intrauterine and postnatal growth failure, craniofacial features (including a triangular shaped face and broad forehead), relative macrocephaly, protruding forehead, body asymmetry and feeding difficulties. Hypomethylation of the H19 differentially methylated region (DMR) on chromosome 11p15.5 is the most common cause of the SRS phenotype. We report the first SRS patient with hypomethylation of the H19-DMR and maternally derived 15q11.2-q13.1 duplication. Although her clinical manifestations overlapped with those of previously reported SRS cases, the patient’s intellectual disability and facial dysmorphic features were inconsistent with the SRS phenotype. Methylation analyses, array comparative genomic hybridization, and a FISH analysis revealed the hypomethylation of the H19-DMR and a maternally derived interstitial 5.7?Mb duplication at 15q11.2-q13.1 encompassing the Prader?Willi/Angelman critical region in the patient. On the basis of the genetic and clinical findings in the present and previously reported cases, it is unlikely that the 15q duplication in the patient led to the development of hypomethylation of the H19-DMR and it is reasonable to consider that the characteristic phenotype in the patient was caused by the coexistence of the two (epi)genetic conditions. Further studies are needed to clarify the mechanisms leading to methylation aberrations in SRS
Genetic screening of regulatory regions of pituitary transcription factors in patients with idiopathic pituitary hormone deficiencies
The Phase Structure of the Gross-Neveu Model with Thirring Interaction at the Next to Leading Order of 1/N Expansion
We study the critical behavior of the D (2 < D < 4) dimensional Gross-Neveu model with a Thirring interaction, where a vector-vector type four-fermi interaction is on equal terms with a scalar-scalar type one. By using inversion method up to the next-to-leading order of 1/N expansion, we construct a gauge invariant effective potential. We show the existence of the chiral order phase transition, and determine explicitly the critical surface. It is observed that the critical behavior is mainly controlled by the Gross-Neveu coupling g. The critical surface can be divided into two parts by the surface g = 1 which is the critical coupling in the Gross-Neveu model at the 1/N next-to-leading order, and the form of the critical surface is drastically change at g = 1. Comparison with the Schwinger-Dyson(SD) equation is also discussed. Our result is almost the same as that derived in the SD equation. Especially, in the case of pure Gross-Neveu model, we succeed in deriving exactly the same critical line as the one derived in the SD equation.
- …
