49 research outputs found

    Atmospheric Acetaldehyde: Importance of Air-Sea Exchange and a Missing Source in the Remote Troposphere.

    Get PDF
    We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models

    Why media representations of corporations matter for public health policy : a scoping review

    Get PDF
    BACKGROUND: Media representations play a crucial role in informing public and policy opinions about the causes of, and solutions to, ill-health. This paper reviews studies analysing media coverage of non-communicable disease (NCD) debates, focusing on how the industries marketing commodities that increase NCD risk are represented. METHODS: A scoping review identified 61 studies providing information on media representations of NCD risks, NCD policies and tobacco, alcohol, processed food and soft drinks industries. The data were narratively synthesized to describe the sample, media depictions of industries, and corporate and public health attempts to frame the media debates. RESULTS: The findings indicate that: (i) the limited research that has been undertaken is dominated by a focus on tobacco; (ii) comparative research across industries/risk-factors is particularly lacking; and (iii) coverage tends to be dominated by two contrasting frames and focuses either on individual responsibilities ('market justice' frames, often promoted by commercial stakeholders) or on the need for population-level interventions ('social justice' frames, frequently advanced by public health advocates). CONCLUSIONS: Establishing the underlying frameworks is crucial for the analysis of media representation of corporations, as they reflect the strategies that respective actors use to influence public health debates and decision making. The potential utility of media research lies in the insights that it can provide for public health policy advocates about successful framing of public health messages and strategies to counter frames that undermine public health goals. A better understanding of current media debates is of paramount importance to improving global health

    Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom

    Get PDF
    We measured the global distribution of tropospheric N2O mixing ratios during the NASA airborne Atmospheric Tomography (ATom) mission. ATom measured concentrations of ∼ 300 gas species and aerosol properties in 647 vertical profiles spanning the Pacific, Atlantic, Arctic, and much of the Southern Ocean basins, nearly from pole to pole, over four seasons (2016–2018). We measured N2O concentrations at 1 Hz using a quantum cascade laser spectrometer (QCLS). We introduced a new spectral retrieval method to account for the pressure and temperature sensitivity of the instrument when deployed on aircraft. This retrieval strategy improved the precision of our ATom QCLS N2O measurements by a factor of three (based on the standard deviation of calibration measurements). Our measurements show that most of the variance of N2O mixing ratios in the troposphere is driven by the influence of N2O-depleted stratospheric air, especially at mid- and high latitudes. We observe the downward propagation of lower N2O mixing ratios (compared to surface stations) that tracks the influence of stratosphere–troposphere exchange through the tropospheric column down to the surface. The highest N2O mixing ratios occur close to the Equator, extending through the boundary layer and free troposphere. We observed influences from a complex and diverse mixture of N2O sources, with emission source types identified using the rich suite of chemical species measured on ATom and the geographical origin calculated using an atmospheric transport model. Although ATom flights were mostly over the oceans, the most prominent N2O enhancements were associated with anthropogenic emissions, including from industry (e.g., oil and gas), urban sources, and biomass burning, especially in the tropical Atlantic outflow from Africa. Enhanced N2O mixing ratios are mostly associated with pollution-related tracers arriving from the coastal area of Nigeria. Peaks of N2O are often associated with indicators of photochemical processing, suggesting possible unexpected source processes. In most cases, the results show how difficult it is to separate the mixture of different sources in the atmosphere, which may contribute to uncertainties in the N2O global budget. The extensive data set from ATom will help improve the understanding of N2O emission processes and their representation in global models.This research has been supported by the National Aeronautics and Space Administration (grant nos. NNX15AJ23G, NNX17AF54G, NNX15AG58A, NNX15AH33A, and 80NSSC19K0124) and the National Science Foundation (grant nos. 1852977, AGS-1547626, and AGS-1623745)

    Diel Cycle Impacts on the Chemical and Light Absorption Properties of Organic Carbon Aerosol from Wildfires in the Western United States

    No full text
    Abstract. Organic aerosol (OA) emissions from biomass burning have been the subject of intense research in recent years, involving a combination of field campaigns and laboratory studies. These efforts have aimed at improving our limited understanding of the diverse processes and pathways involved in the atmospheric processing and evolution of OA properties, culminating in their accurate parameterizations in climate and chemical transport models. To bring closure between laboratory and field studies, wildfire plumes in the western United States were sampled and characterized for their chemical and optical properties during the ground-based segment of the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) field campaign. Using a custom-developed multiwavelength integrated photoacoustic-nephelometer (MIPN) spectrometer in conjunction with a suite of instruments, including an oxidation flow reactor equipped to generate hydroxyl (OH∙) or nitrate (NO3∙) radicals to mimic daytime or nighttime oxidative aging processes, we investigated the effects of multiple equivalent days or nights of OH∙/NO3∙ exposure on the chemical composition and mass absorption cross-sections (MAC(λ)) at 488 and 561 nm of OA emitted from wildfires in Arizona and Oregon. We found that OH∙ exposure reduced the wavelength-dependent MAC(λ) by a factor of 0.72 ± 0.08, consistent with previous laboratory studies. On the other hand, NO3∙ exposure increased it by a factor of up to 1.69 ± 0.38. The MAC enhancement following NO3∙ exposure was correlated with an enhancement in CHO1N and CHOgt1N ion families measured with an aerosol mass spectrometer. </jats:p
    corecore