14 research outputs found

    Selbsttötung und Selbstbetäubung

    No full text
    von Adolf Dau

    Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections in Adults and Children

    Full text link
    Abstract Evidence-based guidelines for the management of patients with methicillin-resistant Staphylococcus aureus (MRSA) infections were prepared by an Expert Panel of the Infectious Diseases Society of America (IDSA). The guidelines are intended for use by health care providers who care for adult and pediatric patients with MRSA infections. The guidelines discuss the management of a variety of clinical syndromes associated with MRSA disease, including skin and soft tissue infections (SSTI), bacteremia and endocarditis, pneumonia, bone and joint infections, and central nervous system (CNS) infections. Recommendations are provided regarding vancomycin dosing and monitoring, management of infections due to MRSA strains with reduced susceptibility to vancomycin, and vancomycin treatment failures.</jats:p

    Insights from reconstitution reactions of COPII vesicle formation using pure components and low mechanical perturbation

    No full text
    As shape transformations of membranes are vital for intracellular trafficking, it is crucial to understand both the mechanics and the biochemistry of these processes. The interplay of these two factors constitutes an experimental challenge, however, because biochemical experiments are not tailored to the investigation of mechanical processes, and biophysical studies using model membranes are not capable of emulating native biological complexity. Reconstituted liposome-based model systems have been widely used for investigating the formation of transport vesicles by the COPII complex that naturally occurs at the endoplasmic reticulum. Here we have revisited these model systems, to address the influence of lipid composition, GTP hydrolyzing conditions and mechanical perturbation on the experimental outcome. We observed that the lipid-dependence of COPII-induced membrane remodeling differs from that predicted based on the lipid-dependence of COPII membrane binding. Under GTP non-hydrolyzing conditions, a structured coat was seen while GTP-hydrolyzing conditions yielded uncoated membranes as well as membranes coated by a thick protein coat of rather unstructured appearance. Detailed up-to-date protocols for purifications of Saccharomyces cerevisiae COPII proteins and for reconstituted reactions using these proteins with giant liposomes are also provided

    Sar1 GTPase Activity Is Regulated by Membrane Curvature

    Get PDF
    This is the final version of the article. It first appeared from the \ud American Society for Biochemistry and Molecular Biology via http://dx.doi.org/10.1074/jbc.M115.672287The majority of biosynthetic secretory proteins initiate their journey through the endomembrane system from specific subdomains of the endoplasmic reticulum (ER). At these locations, coated transport carriers are generated, with the Sar1 GTPase playing a critical role in membrane bending, recruitment of coat components, and nascent vesicle formation. How these events are appropriately coordinated remains poorly understood. Here, we demonstrate that Sar1 acts as the curvature sensing component of the COPII coat complex and highlight the ability of Sar1 to bind more avidly to membranes of high curvature. Additionally, using an atomic force microscopy-based approach, we further show that the intrinsic GTPase activity of Sar1 is necessary for remodeling lipid bilayers. Consistent with this idea, Sar1-mediated membrane remodeling is dramatically accelerated in the presence of its guanine nucleotide activating protein (GAP), Sec23-Sec24, and blocked upon addition of GMP-PNP, a poorly hydrolysable analog of GTP. Our results also indicate that Sar1 GTPase activity is stimulated by membranes that exhibit elevated curvature, potentially enabling Sar1 membrane scission activity to be spatially restricted to highly bent membranes that are characteristic of a bud neck. Taken together, our data support a stepwise model in which the amino-terminal amphipathic helix of GTP-bound Sar1 stably penetrates the ER membrane, promoting local membrane deformation. As membrane bending increases, Sar1 membrane binding is elevated, ultimately culminating in GTP hydrolysis, which may destabilize the bilayer sufficiently to facilitate membrane fission.This work was supported by grants from the NIH (GM110567 and GM088151 to AA). IM, RMH and JME were supported by a grant from the Biotechnology and Biological Sciences Research Council (BB/J018236/1). ERC is an Investigator of the Howard Hughes Medical Institute. We thank Elizabeth Miller for providing purified yeast COPII components, Subhanjan Mondal and Said Goueli at Promega Corporation for providing us access to the GTPase-Glo system ahead of release, and members of the Audhya lab for critically reading this manuscript

    Pharmaceuticals that contain polycyclic hydrocarbon scaffolds

    No full text
    corecore