519 research outputs found
Domain Adaptation for Statistical Classifiers
The most basic assumption used in statistical learning theory is that
training data and test data are drawn from the same underlying distribution.
Unfortunately, in many applications, the "in-domain" test data is drawn from a
distribution that is related, but not identical, to the "out-of-domain"
distribution of the training data. We consider the common case in which labeled
out-of-domain data is plentiful, but labeled in-domain data is scarce. We
introduce a statistical formulation of this problem in terms of a simple
mixture model and present an instantiation of this framework to maximum entropy
classifiers and their linear chain counterparts. We present efficient inference
algorithms for this special case based on the technique of conditional
expectation maximization. Our experimental results show that our approach leads
to improved performance on three real world tasks on four different data sets
from the natural language processing domain
Ask, and shall you receive?: Understanding Desire Fulfillment in Natural Language Text
The ability to comprehend wishes or desires and their fulfillment is
important to Natural Language Understanding. This paper introduces the task of
identifying if a desire expressed by a subject in a given short piece of text
was fulfilled. We propose various unstructured and structured models that
capture fulfillment cues such as the subject's emotional state and actions. Our
experiments with two different datasets demonstrate the importance of
understanding the narrative and discourse structure to address this task
Exponential Family Hybrid Semi-Supervised Learning
We present an approach to semi-supervised learning based on an exponential
family characterization. Our approach generalizes previous work on coupled
priors for hybrid generative/discriminative models. Our model is more flexible
and natural than previous approaches. Experimental results on several data sets
show that our approach also performs better in practice.Comment: 6 pages, 3 figure
- …
