839 research outputs found
Role of the medial part of the intraparietal sulcus in implementing movement direction
The contribution of the posterior parietal cortex (PPC) to visually guided movements has been originally inferred from observations made in patients suffering from optic ataxia. Subsequent electrophysiological studies in monkeys and functional imaging data in humans have corroborated the key role played by the PPC in sensorimotor transformations underlying goal-directed movements, although the exact contribution of this structure remains debated. Here, we used transcranial magnetic stimulation (TMS) to interfere transiently with the function of the left or right medial part of the intraparietal sulcus (mIPS) in healthy volunteers performing visually guided movements with the right hand. We found that a "virtual lesion" of either mIPS increased the scattering in initial movement direction (DIR), leading to longer trajectory and prolonged movement time, but only when TMS was delivered 100-160 ms before movement onset and for movements directed toward contralateral targets. Control experiments showed that deficits in DIR consequent to mIPS virtual lesions resulted from an inappropriate implementation of the motor command underlying the forthcoming movement and not from an inaccurate computation of the target localization. The present study indicates that mIPS plays a causal role in implementing specifically the direction vector of visually guided movements toward objects situated in the contralateral hemifield
ERK Activation and Cell Growth Require CaM Kinases in MCF-7 Breast Cancer Cells
Previous studies on MCF-7 breast cancer cells have shown that the G-protein coupled receptor (GPCR) agonist carbachol increases intracellular calcium levels and the activation of extracellular signal-regulated kinase (ERK). Calcium and calmodulin regulate the calcium/calmodulin- dependent kinase (CaM kinase) family of proteins that have been proposed to regulate ERK and gene transcription. Our results suggest that both estrogen (E2) and carbachol treatment of MCF-7 breast cancer cells trigger phosphorylation of ERK I /2 and the transcription factor Elk-1. Carbachol and estrogen triggered nearly a four- to sixfold increase in MCF-7 cell proliferation by 96 h, respectively. Carbachol-stimulated ERK activation and cell growth was completely blocked by the Muscarinic M3- subtype GPCR inhibitor, 4-DAMP, and siRNA against the M3-subtype GPCR. Interestingly, blockade of CaM KK with the selective inhibitor ST0-609 prevented carbachol activation CaM KI, ERK, Elk-1 , and cell gro\vth. Consistent with these observations, knockdown of CaM KKa and CaM Kly with shRNA-containing plas1nids blocked ERK activation by carbachol. In addition, Elk-I phosphorylation and luciferase activity in response to carbachol treat1nent was also dependent upon CaM kinases and was inhibited by U0126, ST0-609, and siRNA knockdown of CaM kinases and ERK2. Finally, blockade of either CaM KK (with ST0-609) or ERK (with U0126) activities resulted in the inhibition of carbachol- and estrogen-mediated cyclin Dl expression and MCF-7 cell growth. Taken together, our results suggest that carbachol treatment of MCF-7 cells activates CaM KI, ERK, the transcription factor Elk-1 , cyclin D 1, and cell grovvth through CaM KK
Grasp-specific motor resonance is influenced by the visibility of the observed actor
Motor resonance is the modulation of M1 corticospinal excitability induced by observation of others' actions. Recent brain imaging studies have revealed that viewing videos of grasping actions led to a differential activation of the ventral premotor cortex depending on whether the entire person is viewed versus only their disembodied hand. Here we used transcranial magnetic stimulation (TMS) to examine motor evoked potentials (MEPs) in the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) during observation of videos or static images in which a whole person or merely the hand was seen reaching and grasping a peanut (precision grip) or an apple (whole hand grasp). Participants were presented with six visual conditions in which visual stimuli (video vs static image), view (whole person vs hand) and grasp (precision grip vs whole hand grasp) were varied in a 2 × 2 × 2 factorial design. Observing videos, but not static images, of a hand grasping different objects resulted in a grasp-specific interaction, such that FDI and ADM MEPs were differentially modulated depending on the type of grasp being observed (precision grip vs whole hand grasp). This interaction was present when observing the hand acting, but not when observing the whole person acting. Additional experiments revealed that these results were unlikely to be due to the relative size of the hand being observed. Our results suggest that observation of videos rather than static images is critical for motor resonance. Importantly, observing the whole person performing the action abolished the grasp-specific effect, which could be due to a variety of PMv inputs converging on M1
A Causal Role for Primary Motor Cortex in Perception of Observed Actions.
It has been proposed that motor system activity during action observation may be modulated by the kinematics of observed actions. One purpose of this activity during action observation may be to predict the visual consequence of another person’s action based on their movement kinematics. Here, we tested the hypothesis that the primary motor cortex (M1) may have a causal role in inferring information that is present in the kinematics of observed actions. Healthy participants completed an action perception task before and after applying continuous theta burst stimulation (cTBS) over left M1. A neurophysiological marker was used to quantify the extent of M1 disruption following cTBS and stratify our sample a priori to provide an internal control. We found that a disruption to M1 caused a reduction in an individual’s sensitivity to interpret the kinematics of observed actions; the magnitude of suppression of motor excitability predicted this change in sensitivity
Functional connectivity associated with hand shape generation: imitating novel hand postures and pantomiming tool grips challenge different nodes of a shared neural network
Mouse model of intrahepatic cholangiocarcinoma validates FIG-ROS as a potent fusion oncogene and therapeutic target
Cholangiocarcinoma is the second most common primary liver cancer and responds poorly to existing therapies. Intrahepatic cholangiocarcinoma (ICC) likely originates from the biliary tree and develops within the hepatic parenchyma. We have generated a flexible orthotopic allograft mouse model of ICC that incorporates common genetic alterations identified in human ICC and histologically resembles the human disease. We examined the utility of this model to validate driver alterations in ICC and tested their suitability as therapeutic targets. Specifically, we showed that the fused-in-glioblastoma-c- ros-oncogene1 (FIG-ROS1(S); FIG- ROS) fusion gene dramatically accelerates ICC development and that its inactivation in established tumors has a potent antitumor effect. Our studies establish a versatile model of ICC that will be a useful preclinical tool and validate ROS1 fusions as potent oncoproteins and therapeutic targets in ICC and potentially other tumor types
Long-latency modulation of motor cortex excitability by ipsilateral posterior inferior frontal gyrus and pre-supplementary motor area
The primary motor cortex (M1) is strongly influenced by several frontal regions. Dual-site transcranial magnetic stimulation (dsTMS) has highlighted the timing of early (<40 ms) prefrontal/premotor influences over M1. Here we used dsTMS to investigate, for the first time, longer-latency causal interactions of the posterior inferior frontal gyrus (pIFG) and pre-supplementary motor area (pre-SMA) with M1 at rest. A suprathreshold test stimulus (TS) was applied over M1 producing a motor-evoked potential (MEP) in the relaxed hand. Either a subthreshold or a suprathreshold conditioning stimulus (CS) was administered over ipsilateral pIFG/pre-SMA sites before the TS at different CS-TS inter-stimulus intervals (ISIs: 40-150 ms). Independently of intensity, CS over pIFG and pre-SMA (but not over a control site) inhibited MEPs at an ISI of 40 ms. The CS over pIFG produced a second peak of inhibition at an ISI of 150 ms. Additionally, facilitatory modulations were found at an ISI of 60 ms, with supra-but not subthreshold CS intensities. These findings suggest differential modulatory roles of pIFG and pre-SMA in M1 excitability. In particular, the pIFG-but not the pre-SMA-exerts intensity-dependent modulatory influences over M1 within the explored time window of 40-150 ms, evidencing fine-tuned control of M1 output
Long-term progressive motor skill training enhances corticospinal excitability for the ipsilateral hemisphere and motor performance of the untrained hand
It is well established that unilateral motor practice can lead to increased performance in the opposite non-trained hand. Here, we test the hypothesis that progressively increasing task difficulty during long-term skill training with the dominant right hand increase performance and corticomotor excitability of the left non-trained hand. Subjects practiced a visuomotor tracking task engaging right digit V for 6 weeks with either progressively increasing task difficulty (PT) or no progression (NPT). Corticospinal excitability (CSE) was evaluated from the resting motor threshold (rMT) and recruitment curve parameters following application of transcranial magnetic stimulation (TMS) to the ipsilateral primary motor cortex (iM1) hotspot of the left abductor digiti minimi muscle (ADM). PT led to significant improvements in left-hand motor performance immediately after 6 weeks of training (63 ± 18%, P < 0.001) and 8 days later (76 ± 14%, P < 0.001). In addition, PT led to better task performance compared to NPT (19 ± 15%, P = 0.024 and 27 ± 15%, P = 0.016). Following the initial training session, CSE increased across all subjects. After 6 weeks of training and 8 days later, only PT was accompanied by increased CSE demonstrated by a left and upwards shift in the recruitment curves, e.g. indicated by increased MEPmax (P = 0.012). Eight days after training similar effects were observed, but 14 months later motor performance and CSE were similar between groups. We suggest that progressively adjusting demands for timing and accuracy to individual proficiency promotes motor skill learning and drives the iM1-CSE resulting in enhanced performance of the non-trained hand. The results underline the importance of increasing task difficulty progressively and individually in skill learning and rehabilitation training
- …
