910 research outputs found
Control-Group Feature Normalization for Multivariate Pattern Analysis Using the Support Vector Machine
Normalization of feature vector values is a common practice in machine learning. Generally, each feature value is standardized to the unit hypercube or by normalizing to zero mean and unit variance. Classification decisions based on support vector machines (SVMs) or by other methods are sensitive to the specific normalization used on the features. In the context of multivariate pattern analysis using neuroimaging data, standardization effectively up- and down-weights features based on their individual variability. Since the standard approach uses the entire data set to guide the normalization it utilizes the total variability of these features. This total variation is inevitably dependent on the amount of marginal separation between groups. Thus, such a normalization may attenuate the separability of the data in high dimensional space. In this work we propose an alternate approach that uses an estimate of the control-group standard deviation to normalize features before training. We also show that control-based normalization provides better interpretation with respect to the estimated multivariate disease pattern and improves the classifier performance in many cases
Recommended from our members
Prediction of Treatment Response to Neoadjuvant Chemotherapy for Breast Cancer via Early Changes in Tumor Heterogeneity Captured by DCE-MRI Registration.
We analyzed DCE-MR images from 132 women with locally advanced breast cancer from the I-SPY1 trial to evaluate changes of intra-tumor heterogeneity for augmenting early prediction of pathologic complete response (pCR) and recurrence-free survival (RFS) after neoadjuvant chemotherapy (NAC). Utilizing image registration, voxel-wise changes including tumor deformations and changes in DCE-MRI kinetic features were computed to characterize heterogeneous changes within the tumor. Using five-fold cross-validation, logistic regression and Cox regression were performed to model pCR and RFS, respectively. The extracted imaging features were evaluated in augmenting established predictors, including functional tumor volume (FTV) and histopathologic and demographic factors, using the area under the curve (AUC) and the C-statistic as performance measures. The extracted voxel-wise features were also compared to analogous conventional aggregated features to evaluate the potential advantage of voxel-wise analysis. Voxel-wise features improved prediction of pCR (AUC = 0.78 (±0.03) vs 0.71 (±0.04), p < 0.05 and RFS (C-statistic = 0.76 ( ± 0.05), vs 0.63 ( ± 0.01)), p < 0.05, while models based on analogous aggregate imaging features did not show appreciable performance changes (p > 0.05). Furthermore, all selected voxel-wise features demonstrated significant association with outcome (p < 0.05). Thus, precise measures of voxel-wise changes in tumor heterogeneity extracted from registered DCE-MRI scans can improve early prediction of neoadjuvant treatment outcomes in locally advanced breast cancer
Addressing Confounding in Predictive Models with an Application to Neuroimaging
Understanding structural changes in the brain that are caused by a particular disease is a major goal of neuroimaging research. Multivariate pattern analysis (MVPA) comprises a collection of tools that can be used to understand complex disease effects across the brain. We discuss several important issues that must be considered when analyzing data from neuroimaging studies using MVPA. In particular, we focus on the consequences of confounding by non-imaging variables such as age and sex on the results of MVPA. After reviewing current practice to address confounding in neuroimaging studies, we propose an alternative approach based on inverse probability weighting. Although the proposed method is motivated by neuroimaging applications, it is broadly applicable to many problems in machine learning and predictive modeling. We demonstrate the advantages of our approach on simulated and real data examples
FUNCTIONAL PRINCIPAL COMPONENTS MODEL FOR HIGH-DIMENSIONAL BRAIN IMAGING
We establish a fundamental equivalence between singular value decomposition (SVD) and functional principal components analysis (FPCA) models. The constructive relationship allows to deploy the numerical efficiency of SVD to fully estimate the components of FPCA, even for extremely high-dimensional functional objects, such as brain images. As an example, a functional mixed effect model is fitted to high-resolution morphometric (RAVENS) images. The main directions of morphometric variation in brain volumes are identified and discussed
IS MRI-BASED VOLUME A MEDIATOR OF THE ASSOCIATION OF CUMULATIVE LEAD DOSE WITH COGNITIVE FUNCTION?
This work considers the pathway through which past occupational lead exposure impacts cognitive function using cross-sectional data. It is motivated by studies linking cumulative lead dose with brain volumes, volumes with cognitive function, and lead dose with cognitive function. It is hypothesized that the brain regions associated with lead mediate a portion of the association between lead dose and cognitive function. The data were derived from an ongoing study of 513 former organolead manufacturing workers. Using MRIs, a novel analysis was performed to investigate Mediation. Volumes associated with cognitive function and lead dose were derived using registered images and used in a subsequent mediation analysis. Cumulative lead dose was associated with adverse function in the visuo-construction, executive functioning and eye-hand coordination domains. Of these, there was strong evidence of volumetric mediation of lead’s effect on cognition in the visuo-construction domain, a moderate amount for eye-hand coordination, and limited evidence for executive functioning. A second path analysis based approach was also performed. To address the possibility that chance associations explained these findings, a permuted analysis was conducted, the results of which support the mediation inferences. The approach to the evaluation of volumetric mediation may have general applicability in epidemiologic neuroimaging settings
MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS FOR HIGH-DIMENSIONAL DATA
We propose fast and scalable statistical methods for the analysis of hundreds or thousands of high dimensional vectors observed at multiple visits. The proposed inferential methods avoid the difficult task of loading the entire data set at once in the computer memory and use sequential access to data. This allows deployment of our methodology on low-resource computers where computations can be done in minutes on extremely large data sets. Our methods are motivated by and applied to a study where hundreds of subjects were scanned using Magnetic Resonance Imaging (MRI) at two visits roughly five years apart. The original data possesses over ten billion easurements. The approach can be applied to any type of study where data can be unfolded into a long vector including densely bserved functions and images
Statistically-Constrained High-Dimensional Warping Using Wavelet-Based Priors
In this paper, a Statistical Model of Deformation (SMD) that captures the statistical prior distribution of high-dimensional deformations more accurately and effectively than conventional PCA-based statistical shape models is used to regularize deformable registration. SMD utilizes a wavelet-based representation of statistical variation of a deformation field and its Jacobian, and it is able to capture both global and fine shape detail without overconstraining the deformation process. This approach is shown to produce more accurate and robust registration results in MR brain images, relative to the registration methods that use Laplacian-based smoothness constraints of deformation fields. In experiments, we evaluate the SMD-constrained registration by comparing the performance of registration with and without SMD in a specific deformable registration framework. The proposed method can potentially incorporate various registration algorithms to improve their robustness and stability using statistically-based regularization
- …
