15 research outputs found
A Cohort Study of Traffic-Related Air Pollution and Mortality in Toronto, Ontario, Canada
BackgroundChronic exposure to traffic-related air pollution (TRAP) may contribute to premature mortality, but few studies to date have addressed this topic.ObjectivesIn this study we assessed the association between TRAP and mortality in Toronto, Ontario, Canada.MethodsWe collected nitrogen dioxide samples over two seasons using duplicate two-sided Ogawa passive diffusion samplers at 143 locations across Toronto. We calibrated land use regressions to predict NO2 exposure on a fine scale within Toronto. We used interpolations to predict levels of particulate matter with aerodynamic diameter < or = 2.5 microm (PM(2.5)) and ozone levels. We assigned predicted pollution exposures to 2,360 subjects from a respiratory clinic, and abstracted health data on these subjects from medical billings, lung function tests, and diagnoses by pulmonologists. We tracked mortality between 1992 and 2002. We used standard and multilevel Cox proportional hazard models to test associations between air pollution and mortality.ResultsAfter controlling for age, sex, lung function, obesity, smoking, and neighborhood deprivation, we observed a 17% increase in all-cause mortality and a 40% increase in circulatory mortality from an exposure contrast across the interquartile range of 4 ppb NO2. We observed no significant associations with other pollutants.ConclusionsExposure to TRAP was significantly associated with increased all-cause and circulatory mortality in this cohort. A high prevalence of cardiopulmonary disease in the cohort probably limits inference of the findings to populations with a substantial proportion of susceptible individuals
Assessment of the Air Quality Health Index (AQHI) and four alternate AQHI-Plus amendments for wildfire seasons in British Columbia
Evaluating an Air Quality Health Index (AQHI) amendment for communities impacted by residential woodsmoke in British Columbia, Canada
The Canadian Optimized Statistical Smoke Exposure Model (Canossem): A Machine Learning Approach to Estimate National Daily Fine Particulate Matter (Pm2.5) Exposure
Associations between Residential Greenspace, Urban Characteristics and Pregnancy Complications: A Retrospective Cohort Study with Mediation Analysis
Sex-difference in air pollution-related acute circulatory and respiratory mortality and hospitalization
Recommended from our members
A cohort study of traffic-related air pollution and mortality in Toronto, Ontario, Canada.
BackgroundChronic exposure to traffic-related air pollution (TRAP) may contribute to premature mortality, but few studies to date have addressed this topic.ObjectivesIn this study we assessed the association between TRAP and mortality in Toronto, Ontario, Canada.MethodsWe collected nitrogen dioxide samples over two seasons using duplicate two-sided Ogawa passive diffusion samplers at 143 locations across Toronto. We calibrated land use regressions to predict NO2 exposure on a fine scale within Toronto. We used interpolations to predict levels of particulate matter with aerodynamic diameter < or = 2.5 microm (PM(2.5)) and ozone levels. We assigned predicted pollution exposures to 2,360 subjects from a respiratory clinic, and abstracted health data on these subjects from medical billings, lung function tests, and diagnoses by pulmonologists. We tracked mortality between 1992 and 2002. We used standard and multilevel Cox proportional hazard models to test associations between air pollution and mortality.ResultsAfter controlling for age, sex, lung function, obesity, smoking, and neighborhood deprivation, we observed a 17% increase in all-cause mortality and a 40% increase in circulatory mortality from an exposure contrast across the interquartile range of 4 ppb NO2. We observed no significant associations with other pollutants.ConclusionsExposure to TRAP was significantly associated with increased all-cause and circulatory mortality in this cohort. A high prevalence of cardiopulmonary disease in the cohort probably limits inference of the findings to populations with a substantial proportion of susceptible individuals
