16,088 research outputs found
Influence of different polishing materials in the material removal of steel samples
The quality of injection moulded polymer optic parts depends on the surface finish of the respective mould. In order to improve and control the surface finish of the mould it is important to be able to keep the material removal constant during the polishing process of these moulds. This will provide a tactical material removal therefore allowing a controlled correction of the mould’s surface geometry. The aim of this work is to study the influence of different polishing materials in the material removal rate and its reproducibility during the polishing process of hardened steel. Different polyurethane polishing materials with different fillers were tested. It was observed that the filler material of the polyurethane is crucial in order to obtain constant and reproducible results. Experiments were carried out with an industrial robot and the material removal’s depth value was compared
Coping with verbal and social bullying in middle school
Becoming a victim of verbal and social bullying in middle school can lead to illness,
psychological stress, and maladjustment. The coping strategies that students utilize when
they are bullied may influence the likelihood and severity of these negative effects. In
this study, we examined the predictions made by students in two middle schools about
the ways that they would cope with becoming a victim of verbal and social bullying. We
also analyzed influences for coping strategies and student willingness to seek help with
bullying at school. The results show that middle school students generally expect that
they will utilize adaptive approach strategies in trying to solve the problem or obtain
support from others, but those who had been victimized in the last month were more
likely than those not involved in bullying, to predict that they would engage in
maladaptive avoidance coping strategies if victimized in the future. Willingness to seek
help was found to be enhanced by approach coping strategies, less aggressive attitudes,
and lower perceptions of school bullying. Policy implications for efforts to encourage
approach coping strategies in middle school students through educational interventions
and school counseling are discussed.peer-reviewe
On Myelinated Axon Plasticity and Neuronal Circuit Formation and Function
Studies of activity-driven nervous system plasticity have primarily focused on the gray matter. However, MRI-based imaging studies have shown that white matter, primarily composed of myelinated axons, can also be dynamically regulated by activity of the healthy brain. Myelination in the CNS is an ongoing process that starts around birth and continues throughout life. Myelin in the CNS is generated by oligodendrocytes and recent evidence has shown that many aspects of oligodendrocyte development and myelination can be modulated by extrinsic signals including neuronal activity. Because modulation of myelin can, in turn, affect several aspects of conduction, the concept has emerged that activity-regulated myelination represents an important form of nervous system plasticity. Here we review our increasing understanding of how neuronal activity regulates oligodendrocytes and myelinated axons in vivo, with a focus on the timing of relevant processes. We highlight the observations that neuronal activity can rapidly tune axonal diameter, promote re-entry of oligodendrocyte progenitor cells into the cell cycle, or drive their direct differentiation into oligodendrocytes. We suggest that activity-regulated myelin formation and remodeling that significantly change axonal conduction properties are most likely to occur over timescales of days to weeks. Finally, we propose that precise fine-tuning of conduction along already-myelinated axons may also be mediated by alterations to the axon itself. We conclude that future studies need to analyze activity-driven adaptations to both axons and their myelin sheaths to fully understand how myelinated axon plasticity contributes to neuronal circuit formation and function.</p
Resilient random modulo cache memories for probabilistically-analyzable real-time systems
Fault tolerance has often been assessed separately in safety-related real-time systems, which may lead to inefficient solutions. Recently, Measurement-Based Probabilistic Timing Analysis (MBPTA) has been proposed to estimate Worst-Case Execution Time (WCET) on high performance hardware. The intrinsic probabilistic nature of MBPTA-commpliant hardware matches perfectly with the random nature of hardware faults.
Joint WCET analysis and reliability assessment has been done so far for some MBPTA-compliant designs, but not for the most promising cache design: random modulo. In this paper we perform, for the first time, an assessment of the aging-robustness of random modulo and propose new implementations preserving the key properties of random modulo, a.k.a. low critical path impact, low miss rates and MBPTA compliance, while enhancing reliability in front of aging by achieving a better – yet random – activity distribution across cache sets.Peer ReviewedPostprint (author's final draft
Material removal simulation for steel mould polishing
The surface finish of an injection mould influences the quality of the moulded polymer optic parts. In order to improve and control the surface finish of the mould it is important to be able to predict the material removal during the polishing process of this mould. The aim of this work is to predict the material removal during the polishing process, comparing the results obtained from polishing attempts on steel samples and the results obtained from a simulation model. A simulation model is developed with the abrasive wear Holm-Archard equation in ANSYS. This simulation model will help to eliminate the iterative trial and error polishing, therefore facilitating the steel mould production
Improving early design stage timing modeling in multicore based real-time systems
This paper presents a modelling approach for the timing behavior of real-time embedded systems (RTES) in early design phases. The model focuses on multicore processors - accepted as the next computing platform for RTES - and in particular it predicts the contention tasks suffer in the access to multicore on-chip shared resources. The model
presents the key properties of not requiring the application's source code or binary and having high-accuracy and low overhead. The former is of paramount importance in those common scenarios in which several software suppliers work in parallel implementing different applications for a system integrator, subject to different intellectual property (IP) constraints. Our model helps reducing the risk of exceeding the assigned budgets for each application in late design
stages and its associated costs.This work has received funding from the European Space
Agency under Project Reference AO=17722=13=NL=LvH,
and has also been supported by the Spanish Ministry of
Science and Innovation grant TIN2015-65316-P. Jaume Abella
has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft
Bending resistance of partially encased beams at elevated temperature: advanced calculation model
Partially Encased Beams (PEBs) are composite steel and concrete elements in which the web of the steel section is encased by reinforced concrete. The experimental investigation of the bending resistance was already verified in fire and under elevated temperature (Paulo A. G. Piloto el al., 2013a) (Paulo A. G. Piloto el al., 2013b). The three-dimensional finite element solution, with precise detail of each component (steel profile, reinforcement, stirrups and concrete) was used to determine the bending resistance under three point bending configuration. Four temperature levels were tested (20, 200, 400 and 600 degrees C) and three lengths were considered (2.5, 4.0 and 5.5 m), using three different cross section types, based on the dimensions of IPE100, IPE200 and IPE300 steel profiles. Two distinct types of welded stirrups were simulated (PEBA with "C" shape stirrups welded to the web and PEBB with "I" shape stirrups welded to the flange). The solution method is incremental and iterative (arc length), based on geometric and material non-linear analysis (ANSYS), using reduced integration method. Results are in accordance to the new formula presented (P. M. M Vila Real et al., 2004) and adapted to partially encased beams. The bending resistance was not significantly influenced by the type of welded stirrupinfo:eu-repo/semantics/publishedVersio
- …
