22,712 research outputs found
Normal sleep bouts are not essential for C. elegans survival and FoxO is important for compensatory changes in sleep
Additional file 6: Decreased lag-2 function does not slow vulval development. The progeny of wild type and lag-2(q420) animals raised at 25.5 °C were selected at the L4 stage, prior to lethargus entry. Vulval eversion was scored after 3 h; the percentage of animals completing vulval eversion was recorded. Significance was assessed by student’s two-tailed t-test p value < 0.5; error bars represents SEM from 3 trials. Total number of animals: wild type n = 45 and lag-2(q420) n = 42
Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis
Tachyzoite to bradyzoite development in Toxoplasma is marked by major changes in gene expression resulting in a parasite that expresses a new repertoire of surface antigens hidden inside a modified parasitophorous vacuole called the tissue cyst. The factors that control this important life cycle transition are not well understood. Here we describe an important transcriptional repressor mechanism controlling bradyzoite differentiation that operates in the tachyzoite stage. The ApiAP2 factor, AP2IV-4, is a nuclear factor dynamically expressed in late S phase through mitosis/cytokinesis of the tachyzoite cell cycle. Remarkably, deletion of the AP2IV-4 locus resulted in the expression of a subset of bradyzoite-specific proteins in replicating tachyzoites that included tissue cyst wall components BPK1, MCP4, CST1 and the surface antigen SRS9. In the murine animal model, the mis-timing of bradyzoite antigens in tachyzoites lacking AP2IV-4 caused a potent inflammatory monocyte immune response that effectively eliminated this parasite and prevented tissue cyst formation in mouse brain tissue. Altogether, these results indicate that suppression of bradyzoite antigens by AP2IV-4 during acute infection is required for Toxoplasma to successfully establish a chronic infection in the immune-competent host
Recommended from our members
Statistics of Range Images
The statistics of range images from natural environments is a largely unexplored field of research. It closely relates to the statistical modeling of the scene geometry in natural environments, and the modeling of optical natural images. We have used a 3D laser range-finder to collect range images from mixed forest scenes. The images are here analyzed with respect to different statisticsMathematic
Audit Committee Accounting Expertise, Analyst Following, and Market Liquidity
We study the relation between audit committee accounting expertise, analyst following, and market liquidity. Our main results indicate that analyst following increases subsequent to the appointment of an accounting expert to the audit committee. We also provide evidence that accrual quality, as opposed to audit quality or management earnings forecasts, is the channel through which accounting expertise increases analyst following and improves analyst forecast properties. We also show that audit committee accounting expertise is related to higher trading volume and lower liquidity risk, supporting incentives for greater analyst following. Our study extends prior literature by providing evidence that audit committee accounting expertise enhances firms’ information environment beyond the effects it has on financial reporting quality or analysts’ forecast properties. Our study also complements the literature on determinants of analyst following and market liquidity, both of which are related to cost of capital. Results from our study should be useful to firms seeking to enhance analyst following and market liquidity
Recommended from our members
Occlusion Models for Natural Images: A Statistical Study of a Scale-Invariant Dead Leaves Model
We develop a scale-invariant version of Matheron's “dead leaves model” for the statistics of natural images. The model takes occlusions into account and resembles the image formation process by randomly adding independent elementary shapes, such as disks, in layers. We compare the empirical statistics of two large databases of natural images with the statistics of the occlusion model, and find an excellent qualitative, and good quantitative agreement. At this point, this is the only image model which comes close to duplicating the simplest, elementary statistics of natural images—such as, the scale invariance property of marginal distributions of filter responses, the full co-occurrence statistics of two pixels, and the joint statistics of pairs of Haar wavelet responses.Mathematic
Using state space differential geometry for nonlinear blind source separation
Given a time series of multicomponent measurements of an evolving stimulus,
nonlinear blind source separation (BSS) seeks to find a "source" time series,
comprised of statistically independent combinations of the measured components.
In this paper, we seek a source time series with local velocity cross
correlations that vanish everywhere in stimulus state space. However, in an
earlier paper the local velocity correlation matrix was shown to constitute a
metric on state space. Therefore, nonlinear BSS maps onto a problem of
differential geometry: given the metric observed in the measurement coordinate
system, find another coordinate system in which the metric is diagonal
everywhere. We show how to determine if the observed data are separable in this
way, and, if they are, we show how to construct the required transformation to
the source coordinate system, which is essentially unique except for an unknown
rotation that can be found by applying the methods of linear BSS. Thus, the
proposed technique solves nonlinear BSS in many situations or, at least,
reduces it to linear BSS, without the use of probabilistic, parametric, or
iterative procedures. This paper also describes a generalization of this
methodology that performs nonlinear independent subspace separation. In every
case, the resulting decomposition of the observed data is an intrinsic property
of the stimulus' evolution in the sense that it does not depend on the way the
observer chooses to view it (e.g., the choice of the observing machine's
sensors). In other words, the decomposition is a property of the evolution of
the "real" stimulus that is "out there" broadcasting energy to the observer.
The technique is illustrated with analytic and numerical examples.Comment: Contains 14 pages and 3 figures. For related papers, see
http://www.geocities.com/dlevin2001/ . New version is identical to original
version except for URL in the bylin
Pseudomagnetic Fields in a Locally Strained Graphene Drumhead
Recent experiments reveal that a scanning tunneling microscopy (STM) probe
tip can generate a highly localized strain field in a graphene drumhead, which
in turn leads to pseudomagnetic fields in the graphene that can spatially
confine graphene charge carriers in a way similar to a lithographically defined
quantum dot (QD). While these experimental findings are intriguing, their
further implementation in nanoelectronic devices hinges upon the knowledge of
key underpinning parameters, which still remain elusive. In this paper, we
first summarize the experimental measurements of the deformation of graphene
membranes due to interactions with the STM probe tip and a back gate electrode.
We then carry out systematic coarse grained, (CG), simulations to offer a
mechanistic interpretation of STM tip-induced straining of the graphene
drumhead. Our findings reveal the effect of (i) the position of the STM probe
tip relative to the graphene drumhead center, (ii) the sizes of both the STM
probe tip and graphene drumhead, as well as (iii) the applied back-gate
voltage, on the induced strain field and corresponding pseudomagnetic field.
These results can offer quantitative guidance for future design and
implementation of reversible and on-demand formation of graphene QDs in
nanoelectronics.Comment: 21 pages, 9 figure
Crystal growth and magnetic structure of MnBi2Te4
Millimeter-sized MnBiTe single crystals are grown out of Bi-Te flux
and characterized by measuring magnetic and transport properties, scanning
tunneling microscope (STM) and spectroscopy (STS). The magnetic structure of
MnBiTe below T is determined by powder and single crystal neutron
diffraction measurements. Below T=24\,K, Mn moments order
ferromagnetically in the \textit{ab} plane but antiferromagnetically along the
crystallographic \textit{c} axis. The ordered moment is 4.04(13) /Mn
at 10\,K and aligned along the crystallographic \textit{c}-axis. The electrical
resistivity drops upon cooling across T or when going across the
metamagnetic transition in increasing fields below T. A critical scattering
effect was observed in the vicinity of T in the temperature dependence of
thermal conductivity. However, A linear temperature dependence was observed for
thermopower in the temperature range 2K-300K without any anomaly around T.
These indicate that the magnetic order in Mn-Te layer has negligible effect on
the electronic band structure, which makes possible the realization of proposed
topological properties in MnBiTe after fine tuning of the electronic
band structure
TOP2A and EZH2 Provide Early Detection of an Aggressive Prostate Cancer Subgroup.
Purpose: Current clinical parameters do not stratify indolent from aggressive prostate cancer. Aggressive prostate cancer, defined by the progression from localized disease to metastasis, is responsible for the majority of prostate cancer–associated mortality. Recent gene expression profiling has proven successful in predicting the outcome of prostate cancer patients; however, they have yet to provide targeted therapy approaches that could inhibit a patient\u27s progression to metastatic disease. Experimental Design: We have interrogated a total of seven primary prostate cancer cohorts (n = 1,900), two metastatic castration-resistant prostate cancer datasets (n = 293), and one prospective cohort (n = 1,385) to assess the impact of TOP2A and EZH2 expression on prostate cancer cellular program and patient outcomes. We also performed IHC staining for TOP2A and EZH2 in a cohort of primary prostate cancer patients (n = 89) with known outcome. Finally, we explored the therapeutic potential of a combination therapy targeting both TOP2A and EZH2 using novel prostate cancer–derived murine cell lines. Results: We demonstrate by genome-wide analysis of independent primary and metastatic prostate cancer datasets that concurrent TOP2A and EZH2 mRNA and protein upregulation selected for a subgroup of primary and metastatic patients with more aggressive disease and notable overlap of genes involved in mitotic regulation. Importantly, TOP2A and EZH2 in prostate cancer cells act as key driving oncogenes, a fact highlighted by sensitivity to combination-targeted therapy. Conclusions: Overall, our data support further assessment of TOP2A and EZH2 as biomarkers for early identification of patients with increased metastatic potential that may benefit from adjuvant or neoadjuvant targeted therapy approaches. ©2017 AACR
- …
