251 research outputs found

    Poisson geometry of parabolic bundles on Elliptic curves

    Full text link
    The moduli space of GG-bundles on an elliptic curve with additional flag structure admits a Poisson structure. The bivector can be defined using double loop group, loop group and sheaf cohomology constructions. We investigate the links between these methods and for the case \SL_2 perform explicit computations, describing the bracket and its leaves in detail.Comment: Final version: typos fixed, some re-organization; to appear IJ

    Detecting emergent processes in cellular automata with excess information

    Full text link
    Many natural processes occur over characteristic spatial and temporal scales. This paper presents tools for (i) flexibly and scalably coarse-graining cellular automata and (ii) identifying which coarse-grainings express an automaton's dynamics well, and which express its dynamics badly. We apply the tools to investigate a range of examples in Conway's Game of Life and Hopfield networks and demonstrate that they capture some basic intuitions about emergent processes. Finally, we formalize the notion that a process is emergent if it is better expressed at a coarser granularity.Comment: 8 pages, 6 figure

    Uncovering the Temporal Dynamics of Diffusion Networks

    Full text link
    Time plays an essential role in the diffusion of information, influence and disease over networks. In many cases we only observe when a node copies information, makes a decision or becomes infected -- but the connectivity, transmission rates between nodes and transmission sources are unknown. Inferring the underlying dynamics is of outstanding interest since it enables forecasting, influencing and retarding infections, broadly construed. To this end, we model diffusion processes as discrete networks of continuous temporal processes occurring at different rates. Given cascade data -- observed infection times of nodes -- we infer the edges of the global diffusion network and estimate the transmission rates of each edge that best explain the observed data. The optimization problem is convex. The model naturally (without heuristics) imposes sparse solutions and requires no parameter tuning. The problem decouples into a collection of independent smaller problems, thus scaling easily to networks on the order of hundreds of thousands of nodes. Experiments on real and synthetic data show that our algorithm both recovers the edges of diffusion networks and accurately estimates their transmission rates from cascade data.Comment: To appear in the 28th International Conference on Machine Learning (ICML), 2011. Website: http://www.stanford.edu/~manuelgr/netrate
    corecore