1,417 research outputs found

    The Technological Progress of Malaysian Banks: An Empirical Investigation.

    Get PDF
    It is customary to argue that technological innovations result in productivity enhancement. This paper explores this issue in the context of the Malaysian banking sector which has been subject to enormous restructuring and technological innovations, inclusive of the introduction of e-banking. The provision of banking services through electronic delivery channels can be equated with the e-government initiatives. This study attempts to identify the contribution of e-banking and technological progress of Malaysian commercial banks by employing the Malmquist productivity index (MPI), whereby productivity growth amongst the banks is broken down into technical efficiency change, scale change and technological change. The sample includes all 10 domestic commercial banks in Malaysia over the period of 1997 to 2002. The principle findings indicate an overall rise in total productivity, driven by technological progress rather than scale change or technical efficiency change. Extending to e-government, the employment of high-end, state of the art information and communication technologies can facilitate efficient and effective delivery of government services through electronic delivery channels. The results, which detail the improvements achieved by the best practice bank, may provide useful insights for government regulators and management for policy formulation.Malmquist productivity index; technological progress; e-banking; productivity changes

    A Semiclassical Derivation of the QCD Coupling

    Get PDF
    The measured value of the QCD coupling alpha(sub s) at the energy M(sub Zo), the variation of alpha(sub s) as a function of energy in QCD, and classical relativistic dynamics are used to investigate virtual pairs of quarks and antiquarks in vacuum fluctuations. For virtual pairs of bottom quarks and antiquarks, the pair lifetime in the classical model agrees with the lifetime from quantum mechanics to good approximation, and the action integral in the classical model agrees as well with the action that follows from the Uncertainty Principle. This suggests that the particles might have small de Broglie wavelengths and behave with well-localized pointlike dynamics. It also permits alpha(sub s) at the mass energy twice the bottom quark mass to be expressed as a simple fraction: 3/16. This is accurate to approximately 10%. The model in this paper predicts the measured value of alpha(sub s)(M(sub Zo)) to be 0.121, which is in agreement with recent measurements within statistical uncertainties

    Hamiltonian Cycles on Random Eulerian Triangulations

    Full text link
    A random Eulerian triangulation is a random triangulation where an even number of triangles meet at any given vertex. We argue that the central charge increases by one if the fully packed O(n) model is defined on a random Eulerian triangulation instead of an ordinary random triangulation. Considering the case n -> 0, this implies that the system of random Eulerian triangulations equipped with Hamiltonian cycles describes a c=-1 matter field coupled to 2D quantum gravity as opposed to the system of usual random triangulations equipped with Hamiltonian cycles which has c=-2. Hence, in this case one should see a change in the entropy exponent from the value gamma=-1 to the irrational value gamma=(-1-\sqrt{13})/6=-0.76759... when going from a usual random triangulation to an Eulerian one. A direct enumeration of configurations confirms this change in gamma.Comment: 22 pages, 9 figures, references and a comment adde

    Physics of Rheologically-Enhanced Propulsion: Different Strokes in Generalized Stokes

    Get PDF
    Shear-thinning is an important rheological property of many biological fluids, such as mucus, whereby the apparent viscosity of the fluid decreases with shear. Certain microscopic swimmers have been shown to progress more rapidly through shear-thinning fluids, but is this behavior generic to all microscopic swimmers, and what are the physics through which shear-thinning rheology affects a swimmer's propulsion? We examine swimmers employing prescribed stroke kinematics in two-dimensional, inertialess Carreau fluid: shear-thinning "Generalized Stokes" flow. Swimmers are modeled, using the method of femlets, by a set of immersed, regularized forces. The equations governing the fluid dynamics are then discretized over a body-fitted mesh and solved with the finite element method. We analyze the locomotion of three distinct classes of microswimmer: (1) conceptual swimmers comprising sliding spheres employing both one- and two-dimensional strokes, (2) slip-velocity envelope models of ciliates commonly referred to as "squirmers" and (3) monoflagellate pushers, such as sperm. We find that morphologically identical swimmers with different strokes may swim either faster or slower in shear-thinning fluids than in Newtonian fluids. We explain this kinematic sensitivity by considering differences in the viscosity of the fluid surrounding propulsive and payload elements of the swimmer, and using this insight suggest two reciprocal sliding sphere swimmers which violate Purcell's Scallop theorem in shear-thinning fluids. We also show that an increased flow decay rate arising from shear-thinning rheology is associated with a reduction in the swimming speed of slip-velocity squirmers. For sperm-like swimmers, a gradient of thick to thin fluid along the flagellum alters the force it exerts upon the fluid, flattening trajectories and increasing instantaneous swimming speed.Comment: 22 pages, 28 figure

    Simultaneous Dual Band Transmission Over Multimode Fiber-Fed Indoor Wireless Network

    Get PDF
    Performance measurements of different combinations of digital enhanced cordless telecommunications packet radio service, global system for mobile communications, universal mobile telecommunication service, and 802.11g (54 Mbps) signals in a dual band configuration transmitted over an indoor wireless network fed by a low-cost 850-nm vertical-cavity surface-emitting laser (VCSEL)-300m multimode fiber link are presented. The feasibility of such a system is demonstrated with error vector magnitude measurements which are within the required specification

    Non-Gaussian Features of Transmitted Flux of QSO's Lyα\alpha Absorption: Intermittent Exponent

    Full text link
    We calculate the structure function and intermittent exponent of the 1.) Keck data, which consists of 29 high resolution, high signal to noise ratio (S/N) QSO Lyα\alpha absorption spectra, and 2.)the Lyα\alpha forest simulation samples produced via the pseudo hydro scheme for the low density cold dark matter (LCDM) model and warm dark matter (WDM) model with particle mass mW=300,600,800m_W=300, 600, 800 and 1000 eV. These two measures detect not only non-gaussianities, but also the type of non-gaussianty in the the field. We find that, 1.) the structure functions of the simulation samples are significantly larger than that of Keck data on scales less than about 100 h1^{-1} kpc, 2.) the intermittent exponent of the simulation samples is more negative than that of Keck data on all redshifts considered, 3.) the order-dependence of the structure functions of simulation samples are closer to the intermittency of hierarchical clustering on all scales, while the Keck data are closer to a lognormal field on small scales. These differences are independent of noise and show that the intermittent evolution modeled by the pseudo-hydro simulation is substantially different from observations, even though they are in good agreement in terms of second and lower order statistics. (Abridged)Comment: 17 pages, 13 figures. Accepted by Ap

    Drying of complex suspensions

    Full text link
    We investigate the 3D structure and drying dynamics of complex mixtures of emulsion droplets and colloidal particles, using confocal microscopy. Air invades and rapidly collapses large emulsion droplets, forcing their contents into the surrounding porous particle pack at a rate proportional to the square of the droplet radius. By contrast, small droplets do not collapse, but remain intact and are merely deformed. A simple model coupling the Laplace pressure to Darcy's law correctly estimates both the threshold radius separating these two behaviors, and the rate of large-droplet evacuation. Finally, we use these systems to make novel hierarchical structures.Comment: 4 pages, 4 figure

    Metamorphism of CO and CO-like chondrites and comparisons with type 3 ordinary chondrites

    Get PDF
    In order to explore their metamorphic history, thermoluminescence data have been obtained for 10 CO or CO-related chondrites from the Antarctic. Six have TL properties indicating low to intermediate levels of metamorphism, while Lewis Cliff 85332 and three paired meteorites from MacAlpine Hills (87300,87301 and 88107) have unusual TL properties similar to those of the very primitive Colony and Allan Hills A77307 CO-related chondrites. Cathodoluminescence photomosaics of nine well-studied CO chondrites are also presented and compared with similar data for the type 3 ordinary chondrites in which CL properties vary systematically with metamorphism. It is concluded that the CO chondrites, like the ordinary chondrites, form a metamorphic sequence and may be subdivided in an analogous manner using TL, CL and other petrographic and compositional data. Definitions for CO chondrites of the petrologic types 3.0-3.9 are proposed. However, it is stressed that the thermal history of the CO and ordinary chondrites is quite different, the range of equilibration for the CO chondrites is similar to the ordinary chondrites, but the former have not experienced temperatures above those experienced by type 3.5 ordinary chondrites (probably around 600℃). Presumably the CO chondrites spent longer times at lower temperatures. A CL photomosaic of Murchison is also presented, which has two features in common with the type 3.0-3.1 CO and ordinary chondrites; type I chondrules whose mesostases produce yellow CL (due to an unidentified but highly metamorphism-sensitive phase) and fine-grained matrix with red CL due to forsterite. Haloes of matrix material around chondrules and other objects in Murchison are thought to be due to aqueous destruction of those objects, and Fezoning in olivines in chondrules with broad haloes is also throught to be due to aqueous processes

    The shear-driven Rayleigh problem for generalised Newtonian fluids

    Get PDF
    We consider a variant of the classical ‘Rayleigh problem’ (‘Stokes’s first problem’) in which a semi-infinite region of initially quiescent fluid is mobilised by a shear stress applied suddenly to its boundary. We show that self-similar solutions for the fluid velocity are available for any generalised Newtonian fluid, regardless of its constitutive law. We demonstrate how these solutions may be used to provide insight into some generic questions about the behaviour of unsteady, non-Newtonian boundary layers, and in particular the effect of shear thinning or thickening on the thickness of a boundary layer
    corecore