7,536 research outputs found

    Accelerating K-mer Frequency Counting with GPU and Non-Volatile Memory

    Full text link
    The emergence of Next Generation Sequencing (NGS) platforms has increased the throughput of genomic sequencing and in turn the amount of data that needs to be processed, requiring highly efficient computation for its analysis. In this context, modern architectures including accelerators and non-volatile memory are essential to enable the mass exploitation of these bioinformatics workloads. This paper presents a redesign of the main component of a state-of-the-art reference-free method for variant calling, SMUFIN, which has been adapted to make the most of GPUs and NVM devices. SMUFIN relies on counting the frequency of \textit{k-mers} (substrings of length kk) in DNA sequences, which also constitutes a well-known problem for many bioinformatics workloads, such as genome assembly. We propose techniques to improve the efficiency of k-mer counting and to scale-up workloads like \sm that used to require 16 nodes of \mn to a single machine with a GPU and NVM drives. Results show that although the single machine is not able to improve the time to solution of 16 nodes, its CPU time is 7.5x shorter than the aggregate CPU time of the 16 nodes, with a reduction in energy consumption of 5.5x.Comment: Submitted to the 19th IEEE International Conference on high Performance Computing and Communication (HPC 2017). Partially funded by European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 639595) - HiEST Projec

    Multi-tenant Pub/Sub processing for real-time data streams

    Get PDF
    Devices and sensors generate streams of data across a diversity of locations and protocols. That data usually reaches a central platform that is used to store and process the streams. Processing can be done in real time, with transformations and enrichment happening on-the-fly, but it can also happen after data is stored and organized in repositories. In the former case, stream processing technologies are required to operate on the data; in the latter batch analytics and queries are of common use. This paper introduces a runtime to dynamically construct data stream processing topologies based on user-supplied code. These dynamic topologies are built on-the-fly using a data subscription model defined by the applications that consume data. Each user-defined processing unit is called a Service Object. Every Service Object consumes input data streams and may produce output streams that others can consume. The subscription-based programing model enables multiple users to deploy their own data-processing services. The runtime does the dynamic forwarding of data and execution of Service Objects from different users. Data streams can originate in real-world devices or they can be the outputs of Service Objects. The runtime leverages Apache STORM for parallel data processing, that combined with dynamic user-code injection provides multi-tenant stream processing topologies. In this work we describe the runtime, its features and implementation details, as well as we include a performance evaluation of some of its core components.This work is partially supported by the European Research Council (ERC) un- der the EU Horizon 2020 programme (GA 639595), the Spanish Ministry of Economy, Industry and Competitivity (TIN2015-65316-P) and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    A Devotion to the Law

    Get PDF

    New Beginnings for Nontraditional Students

    Get PDF

    Building Plans at the School of Law

    Get PDF

    Topology-aware GPU scheduling for learning workloads in cloud environments

    Get PDF
    Recent advances in hardware, such as systems with multiple GPUs and their availability in the cloud, are enabling deep learning in various domains including health care, autonomous vehicles, and Internet of Things. Multi-GPU systems exhibit complex connectivity among GPUs and between GPUs and CPUs. Workload schedulers must consider hardware topology and workload communication requirements in order to allocate CPU and GPU resources for optimal execution time and improved utilization in shared cloud environments. This paper presents a new topology-aware workload placement strategy to schedule deep learning jobs on multi-GPU systems. The placement strategy is evaluated with a prototype on a Power8 machine with Tesla P100 cards, showing speedups of up to ≈1.30x compared to state-of-the-art strategies; the proposed algorithm achieves this result by allocating GPUs that satisfy workload requirements while preventing interference. Additionally, a large-scale simulation shows that the proposed strategy provides higher resource utilization and performance in cloud systems.This project is supported by the IBM/BSC Technology Center for Supercomputing collaboration agreement. It has also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 639595). It is also partially supported by the Ministry of Economy of Spain under contract TIN2015-65316-P and Generalitat de Catalunya under contract 2014SGR1051, by the ICREA Academia program, and by the BSC-CNS Severo Ochoa program (SEV-2015-0493). We thank our IBM Research colleagues Alaa Youssef and Asser Tantawi for the valuable discussions. We also thank SC17 committee member Blair Bethwaite of Monash University for his constructive feedback on the earlier drafts of this paper.Peer ReviewedPostprint (published version

    Si elimino el examen, ¿cómo evalúo?: Una discusión sobre las actividades sustitutivas del examen y su escalabilidad

    Get PDF
    Se ha discutido mucho sobre los inconvenientes de los exámenes, siendo criticados en ocasiones por fomentar el aprendizaje superficial. Aunque muchos profesores estemos de acuerdo, nos preguntamos ¿por qué actividades se pueden sustituir? Existen experiencias para eliminar el uso de exámenes, pero la mayoría son criticadas por realizarse sobre grupos pequeños con muchas actividades evaluadoras. Este trabajo presenta diversas estrategias y actividades realizadas en una asignatura del grado de Informática para poder eliminar los exámenes consiguiendo al mismo tiempo un alto nivel de aprendizaje. La experiencia se ha realizado sobre un grupo pequeño, pero ante la presión de nuestro centro por aumentar la matrícula, se están diseñando las actividades para seguir garantizando una buena experiencia educativa sin incrementar el trabajo del profesor.Peer ReviewedPostprint (published version

    Senator Sarbanes at Chevy Chase Club

    Get PDF

    ALOJA: A benchmarking and predictive platform for big data performance analysis

    Get PDF
    The main goals of the ALOJA research project from BSC-MSR, are to explore and automate the characterization of cost-effectivenessof Big Data deployments. The development of the project over its first year, has resulted in a open source benchmarking platform, an online public repository of results with over 42,000 Hadoop job runs, and web-based analytic tools to gather insights about system's cost-performance1. This article describes the evolution of the project's focus and research lines from over a year of continuously benchmarking Hadoop under dif- ferent configuration and deployments options, presents results, and dis cusses the motivation both technical and market-based of such changes. During this time, ALOJA's target has evolved from a previous low-level profiling of Hadoop runtime, passing through extensive benchmarking and evaluation of a large body of results via aggregation, to currently leveraging Predictive Analytics (PA) techniques. Modeling benchmark executions allow us to estimate the results of new or untested configu- rations or hardware set-ups automatically, by learning techniques from past observations saving in benchmarking time and costs.This work is partially supported the BSC-Microsoft Research Centre, the Span- ish Ministry of Education (TIN2012-34557), the MINECO Severo Ochoa Research program (SEV-2011-0067) and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft
    corecore