246 research outputs found
Materials Selection for Aerospace Systems
A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues
Recommended from our members
A Computationally Efficient Framework for Modelling Energy Consumption of ICE and Electric Vehicles
This article proposes a novel framework to develop computationally efficient energy consumption models of electric and internal combustion engine vehicles. The number of calculations in a conventional energy consumption model prevents the model’s usage in applications where time is limited. As many fleet operators around the world are in the process of transitioning towards electric vehicles, a computationally efficient energy consumption model will be valuable to analyse the vehicles they trial. A vehicle’s energy consumption depends on the vehicle characteristics, drive cycles and vehicle mass. The proposed modelling framework considers these aspects, is computationally efficient, and can be run using open source software packages. The framework is validated through two use cases: an electric bus and a diesel truck. The model error’s standard deviation is less 5% and its mean is less than 2%. The proposed model’s mean computation time is less than 20 ms, which is two orders of magnitude lower than that of the baseline model. Finally, a case study was performed to illustrate the usefulness of the modelling framework for a fleet operator
A National Power Infrastructure for Charge-on-the-Move: An Appraisal for Great Britain
A review of challenges with using the natural gas system for hydrogen
Hydrogen, as an energy carrier, is attractive to many stakeholders based on the assumption that the extensive global network of natural gas infrastructure can be repurposed to transport hydrogen as part of a zero‐carbon energy future. Therefore, utility companies and governments are rapidly advancing efforts to pilot blending low‐carbon hydrogen into existing natural gas systems, many with the goal of eventually shifting to pure hydrogen. However, hydrogen has fundamentally different physical and chemical properties to natural gas, with major consequences for safety, energy supply, climate, and cost. We evaluate the suitability of using existing natural gas infrastructure for distribution of hydrogen. We summarize differences between hydrogen and natural gas, assess the latest science and engineering of each component of the natural gas value chain for hydrogen distribution, and discuss proposed solutions for building an effective hydrogen value chain. We find that every value chain component is challenged by reuse. Hydrogen blending can circumvent many challenges but offers only a small reduction in greenhouse gas emissions due to hydrogen's low volumetric energy density. Furthermore, a transition to pure hydrogen is not possible without significant retrofits and replacements. Even if technical and economic barriers are overcome, serious safety and environmental risks remain
Net-zero solutions and research priorities in the 2020s
Key messages
• Technological, societal and nature-based solutions should work together to enable systemic change towards a regenerative society, and to deliver net-zero greenhouse gas (GHG) emissions.
• Prioritise research into efficient, low-carbon and carbon-negative solutions for sectors that are difficult to decarbonise; i.e. energy storage, road transport, shipping, aviation and grid infrastructure.
• Each solution should be assessed with respect to GHG emissions reductions, energy efficiency and societal implications to provide a basis for developing long-term policies, maximising positive impact of investment and research effort, and guiding industry investors in safe and responsible planning
Recommended from our members
Isolation and characterization of NY-ESO-1–specific T cell receptors restricted on various MHC molecules
Tumor-specific T cell receptor (TCR) gene transfer enables specific and potent immune targeting of tumor antigens. Due to the prevalence of the HLA-A2 MHC class I supertype in most human populations, the majority of TCR gene therapy trials targeting public antigens have employed HLA-A2–restricted TCRs, limiting this approach to those patients expressing this allele. For these patients, TCR gene therapy trials have resulted in both tantalizing successes and lethal adverse events, underscoring the need for careful selection of antigenic targets. Broad and safe application of public antigen-targeted TCR gene therapies will require (i) selecting public antigens that are highly tumor-specific and (ii) targeting multiple epitopes derived from these antigens by obtaining an assortment of TCRs restricted by multiple common MHC alleles. The canonical cancer-testis antigen, NY-ESO-1, is not expressed in normal tissues but is aberrantly expressed across a broad array of cancer types. It has also been targeted with A2-restricted TCR gene therapy without adverse events or notable side effects. To enable the targeting of NY-ESO-1 in a broader array of HLA haplotypes, we isolated TCRs specific for NY-ESO-1 epitopes presented by four MHC molecules: HLA-A2, -B07, -B18, and -C03. Using these TCRs, we pilot an approach to extend TCR gene therapies targeting NY-ESO-1 to patient populations beyond those expressing HLA-A2
Net-zero solutions and research priorities in the 2020s
Key messages
• Technological, societal and nature-based solutions should work together to enable systemic change
towards a regenerative society, and to deliver net-zero greenhouse gas (GHG) emissions.
• Prioritise research into efficient, low-carbon and carbon-negative solutions for sectors that are difficult
to decarbonise; i.e. energy storage, road transport, shipping, aviation and grid infrastructure.
• Each solution should be assessed with respect to GHG emissions reductions, energy efficiency and
societal implications to provide a basis for developing long-term policies, maximising positive impact
of investment and research effort, and guiding industry investors in safe and responsible planning
Sex differences in oncogenic mutational processes.
Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research
Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma
This is the three year update of a randomised phase III trial in patients with locally advanced inoperable stage III or stage IV melanoma. 1296 patients were radomised to receive either ipilimumab (Ipi), nivolumab (Nivo) or both antibodies (Ipi+Nivo). Complete responses were seen in 5, 16 & 19% of patients in the Ipi, Nivo and Ipi+Nivo groups respectively. Partial responses were seen in 14, 28 & 29% of patients respectively. With a minimum follow up of 28 months 3 year overall survivals were 32, 52 & 58% in the Ipi, Nivo & Ipi+Nivo respectively. In patients with braf mutations the three year survivals were 37, 56 & 68% in the three groups. This compares with a three year survival of 44% in the dabrafenib plus trametinib arm of the COMBI-D trial (J. Clin. Oncol. 2017 Dob: 10.1200/JCO.2017.74.1025). These data represent practice changing data for oncologist who treat melanoma and life changing treatment for patients with metastatic melanoma
- …
