367 research outputs found

    Near-Infrared Thermal Emission from the Hot Jupiter TrES-2b: Ground-Based Detection of the Secondary Eclipse

    Full text link
    We present near-infrared Ks-band photometry bracketing the secondary eclipse of the hot Jupiter TrES-2b using the Wide-field Infrared Camera on the Canada-France-Hawaii Telescope. We detect its thermal emission with an eclipse depth of 0.062 +/- 0.012% (5-sigma). Our best-fit secondary eclipse is consistent with a circular orbit (a 3-sigma upper limit on the eccentricity, e, and argument or periastron, omega, of |ecos(omega)| < 0.0090), in agreement with mid-infrared detections of the secondary eclipse of this planet. A secondary eclipse of this depth corresponds to a day-side Ks-band brightness temperature of TB = 1636 +/- 88 K. Our thermal emission measurement when combined with the thermal emission measurements using Spitzer/IRAC from O'Donovan and collaborators suggest that this planet exhibits relatively efficient day to night-side redistribution of heat and a near isothermal dayside atmospheric temperature structure, with a spectrum that is well approximated by a blackbody. It is unclear if the atmosphere of TrES-2b requires a temperature inversion; if it does it is likely due to chemical species other than TiO/VO as the atmosphere of TrES-2b is too cool to allow TiO/VO to remain in gaseous form. Our secondary eclipse has the smallest depth of any detected from the ground at around 2 micron to date.Comment: ApJ accepted, 8 pages, 9 figures, in emulateapj format

    Multiwavelength transit observations of the candidate disintegrating planetesimals orbiting WD 1145+017

    Full text link
    We present multiwavelength, ground-based follow-up photometry of the white dwarf WD 1145+017, which has recently been suggested to be orbited by up to six or more short-period, low-mass, disintegrating planetesimals. We detect nine significant dips in flux of between 10% and 30% of the stellar flux in our ~32 hr of photometry, suggesting that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the asymmetric transits that we observe, we confirm that the transit egress is usually longer than the ingress, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals are unclear, but at least one object, and likely more, have orbital periods of ~4.5 hr. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high-precision photometry also displays low-amplitude variations, suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. We compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions, the radius of single-size particles in the cometary tails streaming behind the planetesimals must be ~0.15 μm or larger, or ~0.06 μm or smaller, with 2σ confidence

    Near-Infrared Thermal Emission from TrES-3b: A Ks-band detection and an H-band upper limit on the depth of the secondary eclipse

    Full text link
    We present H and Ks-band photometry bracketing the secondary eclipse of the hot Jupiter TrES-3b using the Wide-field Infrared Camera on the Canada-France-Hawaii Telescope. We detect the secondary eclipse of TrES-3b with a depth of 0.133+/-0.017% in Ks-band (8-sigma) - a result in sharp contrast to the eclipse depth reported by de Mooij & Snellen. We do not detect its thermal emission in H-band, but place a 3-sigma limit on the depth of the secondary eclipse in this band of 0.051%. A secondary eclipse of this depth in Ks requires very efficient day-to-nightside redistribution of heat and nearly isotropic reradiation, conclusion that is in agreement with longer wavelength, mid-infrared Spitzer observations. Our 3-sigma upper-limit on the depth of our H-band secondary eclipse also argues for very efficient redistribution of heat and suggests that the atmospheric layer probed by these observations may be well homogenized. However, our H-band upper limit is so constraining that it suggests the possibility of a temperature inversion at depth, or an absorbing molecule, such as methane, that further depresses the emitted flux at this wavelength. The combination of our near-infrared measurements and those obtained with Spitzer suggest that TrES-3b displays a near isothermal dayside atmospheric temperature structure, whose spectrum is well approximated by a blackbody. We emphasize that our strict H-band limit is in stark disagreement with the best-fit atmospheric model that results from longer wavelength observations only, thus highlighting the importance of near-infrared observations at multiple wavelengths in addition to those returned by Spitzer in the mid-infrared to facilitate a comprehensive understanding of the energy budgets of transiting exoplanets.Comment: ApJ accepted, 8 pages, 7 figures, in EmulateApJ forma

    Near-infrared Thermal Emission from WASP-12b: detections of the secondary eclipse in Ks, H & J

    Full text link
    We present Ks, H & J-band photometry of the very highly irradiated hot Jupiter WASP-12b using the Wide-field Infrared Camera on the Canada-France-Hawaii telescope. Our photometry brackets the secondary eclipse of WASP-12b in the Ks and H-bands, and in J-band starts in mid-eclipse and continues until well after the end of the eclipse. We detect its thermal emission in all three near-infrared bands. Our secondary eclipse depths are 0.309 +/- 0.013% in Ks-band (24-sigma), 0.176 +/- 0.020% in H-band (9-sigma) and 0.131 +/- 0.028% in J-band (4-sigma). All three secondary eclipses are best-fit with a consistent phase that is compatible with a circular orbit. By combining our secondary eclipse times with others published in the literature, as well as the radial velocity and transit timing data for this system, we show that there is no evidence that WASP-12b is precessing at a detectable rate, and show that its orbital eccentricity is likely zero. Our thermal emission measurements also allow us to constrain the characteristics of the planet's atmosphere; our Ks-band eclipse depth argues in favour of inefficient day to nightside redistribution of heat and a low Bond albedo for this very highly irradiated hot Jupiter. The J and H-band brightness temperatures are slightly cooler than the Ks-band brightness temperature, and thus hint at the possibility of a modest temperature inversion deep in the atmosphere of WASP-12b; the high pressure, deep atmospheric layers probed by our J and H-band observations are likely more homogenized than the higher altitude layer. Lastly, our best-fit Ks-band eclipse has a marginally longer duration than would otherwise be expected; this may be tentative evidence for material being tidally stripped from the planet - as was predicted for this system by Li & collaborators, and for which observational confirmation was recently arguably provided by Fossati & collaborators.Comment: AJ accepted. 12 pages, 11 figures, in EmulateApJ format. Version 2 removes two figures that were added by mistak

    Transit Detection in the MEarth Survey of Nearby M Dwarfs: Bridging the Clean-First, Search-Later Divide

    Full text link
    In the effort to characterize the masses, radii, and atmospheres of potentially habitable exoplanets, there is an urgent need to find examples of such planets transiting nearby M dwarfs. The MEarth Project is an ongoing effort to do so, as a ground-based photometric survey designed to detect exoplanets as small as 2 Earth radii transiting mid-to-late M dwarfs within 33 pc of the Sun. Unfortunately, identifying transits of such planets in photometric monitoring is complicated both by the intrinsic stellar variability that is common among these stars and by the nocturnal cadence, atmospheric variations, and instrumental systematics that often plague Earth-bound observatories. Here we summarize the properties of MEarth data gathered so far, and we present a new framework to detect shallow exoplanet transits in wiggly and irregularly-spaced light curves. In contrast to previous methods that clean trends from light curves before searching for transits, this framework assesses the significance of individual transits simultaneously while modeling variability, systematics, and the photometric quality of individual nights. Our Method for Including Starspots and Systematics in the Marginalized Probability of a Lone Eclipse (MISS MarPLE) uses a computationally efficient semi-Bayesian approach to explore the vast probability space spanned by the many parameters of this model, naturally incorporating the uncertainties in these parameters into its evaluation of candidate events. We show how to combine individual transits processed by MISS MarPLE into periodic transiting planet candidates and compare our results to the popular Box-fitting Least Squares (BLS) method with simulations. By applying MISS MarPLE to observations from the MEarth Project, we demonstrate the utility of this framework for robustly assessing the false alarm probability of transit signals in real data. [slightly abridged]Comment: accepted to the Astronomical Journal, 21 pages, 12 figure

    Searching for Trojan Asteroids in the HD 209458 System: Space-based MOST Photometry and Dynamical Modeling

    Full text link
    We have searched Microvariability and Oscillations of STars (MOST) satellite photometry obtained in 2004, 2005, and 2007 of the solar-type star HD 209458 for Trojan asteroid swarms dynamically coupled with the system's transiting "hot Jupiter" HD 209458b. Observations of the presence and nature of asteroids around other stars would provide unique constraints on migration models of exoplanetary systems. Our results set an upper limit on the optical depth of Trojans in the HD 209458 system that can be used to guide current and future searches of similar systems by upcoming missions. Using cross-correlation methods with artificial signals implanted in the data, we find that our detection limit corresponds to a relative Trojan transit depth of 1\times10-4, equivalent to ~1 lunar mass of asteroids, assuming power-law Trojan size distributions similar to Jupiter's Trojans in our solar system. We confirm with dynamical interpretations that some asteroids could have migrated inward with the planet to its current orbit at 0.045 AU, and that the Yarkovsky effect is ineffective at eliminating objects of > 1 m in size. However, using numerical models of collisional evolution we find that, due to high relative speeds in this confined Trojan environment, collisions destroy the vast majority of the asteroids in <10 Myr. Our modeling indicates that the best candidates to search for exoTrojan swarms in 1:1 mean resonance orbits with "hot Jupiters" are young systems (ages of about 1 Myr or less). Years of Kepler satellite monitoring of such a system could detect an asteroid swarm with a predicted transit depth of 3\times10-7.Comment: 32 pages, 8 figure

    Remnant gas in evolved circumstellar disks: Herschel PACS observations of 10-100 Myr old disk systems

    Full text link
    We present Herschel PACS spectroscopy of the [OI] 63 micron gas-line for three circumstellar disk systems showing signs of significant disk evolution and/or planet formation: HR 8799, HD 377 and RX J1852.3-3700. [OI] is undetected toward HR 8799 and HD 377 with 3 sigma upper limits of 6.8 x 10^-18 W m^-2 and 9.9 x 10^-18 W m^-2 respectively. We find an [OI] detection for RX J1852.3-3700 at 12.3 +- 1.8 x 10^-18 W m^-2. We use thermo-chemical disk models to model the gas emission, using constraints on the [OI] 63 micron, and ancillary data to derive gas mass upper limits and constrain gas-to-dust ratios. For HD 377 and HR 8799, we find 3 sigma upper limits on the gas mass of 0.1-20 Mearth. For RX J1852.3-3700, we find two distinct disk scenarios that could explain the detection of [OI] 63 micron and CO(2-1) upper limits reported from the literature: (i) a large disk with gas co-located with the dust (16-500 AU), resulting in a large tenuous disk with ~16 Mearth of gas, or (ii) an optically thick gas disk, truncated at ~70 AU, with a gas mass of 150 Mearth. We discuss the implications of these results for the formation and evolution of planets in these three systems.Comment: Accepted for publication in ApJ, 8 pages ApJ style (incl. references), 2 figures, 4 table

    Search for Rayleigh scattering in the atmosphere of GJ1214b

    Get PDF
    We investigate the atmosphere of GJ1214b, a transiting super-Earth planet with a low mean density, by measuring its transit depth as a function of wavelength in the blue optical portion of the spectrum. It is thought that this planet is either a mini-Neptune, consisting of a rocky core with a thick, hydrogen-rich atmosphere, or a planet with a composition dominated by water. Most observations favor a water-dominated atmosphere with a small scale-height, however, some observations indicate that GJ1214b could have an extended atmosphere with a cloud layer muting the molecular features. In an atmosphere with a large scale-height, Rayleigh scattering at blue wavelengths is likely to cause a measurable increase in the apparent size of the planet towards the blue. We observed the transit of GJ1214b in the B-band with the FOcal Reducing Spectrograph (FORS) at the Very Large Telescope (VLT) and in the g-band with both ACAM on the William Hershel Telescope (WHT) and the Wide Field Camera (WFC) at the Isaac Newton Telescope (INT). We find a planet-to-star radius ratio in the B-band of 0.1162+/-0.0017, and in the g-band 0.1180+/-0.0009 and 0.1174+/-0.0017 for the WHT & INT observations respectively. These optical data do not show significant deviations from previous measurements at longer wavelengths. In fact, a flat transmission spectrum across all wavelengths best describes the combined observations. When atmospheric models are considered a small scale-height water-dominated model fits the data best.Comment: Accepted for publication in Ap

    Multiwavelength Transit Observations of the Candidate Disintegrating Planetesimals Orbiting WD 1145+017

    Get PDF
    We present multiwavelength, multi-telescope, ground-based follow-up photometry of the white dwarf WD 1145+017, that has recently been suggested to be orbited by up to six or more, short-period, low-mass, disintegrating planetesimals. We detect 9 significant dips in flux of between 10% and 30% of the stellar flux from our ground-based photometry. We observe transits deeper than 10% on average every ~3.6 hr in our photometry. This suggests that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the multiple asymmetric transits that we observe, we confirm that the transit egress timescale is usually longer than the ingress timescale, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals in this system are unclear from the transit-times, but at least one object, and likely more, have orbital periods of ~4.5 hours. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high precision photometry also displays low amplitude variations suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. For the significant transits we observe, we compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions the radius of single-size particles in the cometary tails streaming behind the planetesimals in this system must be ~0.15 microns or larger, or ~0.06 microns or smaller, with 2-sigma confidence.Comment: 16 pages, 12 figures, submitted to ApJ on October 8th, 201

    The regulation of polyclonal mitogen-stimulated human gamma-interferon production

    Get PDF
    The regulation of human interferon-gamma production by peripheral blood mononuclear leukocytes, stimulated by polyclonal T-cell activators (mitogens), was investigated because of its possible importance as a regulator of the immune response and because it usually accompanies lymphocyte activation. Low density lymphocytes, enriched for large granular lymphocytes, were shown to be capable of IFN-gamma production in the absence of macrophages, unlike T-cells, but with interaction of two subsets of this low density population being required for optimal production. It is suggested that a non-T cell low density population can act as accessory cells for T-cells in the absence of macrophages. The action of both positive and negative modulators of IFN-gamma production were investigated. The importance of IL-1 production was demonstrated by the depressive effects of anti-IL-1 antibody and the ability of purified IL-1 to reverse the depressive effects of macrophage-depletion on T-cell activation. Blockade of the IL-2 receptor by monoclonal antibodies inhibits IFN-gamma production, as does treatment with prostaglandin E₂, known to inhibit IL-2 production. The receptor blockade is reversible by pure IL-2 as is the PGE₂ inhibition. IL-1 and IL-2 alone rarely induced any IFN-gamma. These data imply that for maximal IFN-gamma production the interaction of at least two other protein factors (IL-1, IL-2) with mitogen-stimulated T-cells is necessary, and that other factors may act as down-regulators. A variety of cell-surface molecules involved in MHC restriction and also the T11 antigen were also shown to have regulatory effects. Those of the T11 pathway may involve effects on calcium and IL-2 levels. T-cell activation could also be triggered by calcium ionophore plus tumour promoter. Activation of the IL-2 and IFN-gamma genes by this method was shown to be coordinate and not to require protein synthesis. Thus many regulatory effects on IFN-gamma production probably act at a post-transcriptional level
    corecore