12,384 research outputs found
Scattering of low-energy electrons and positrons by atomic beryllium: Ramsauer-Townsend effect
Total cross sections for the scattering of low-energy electrons and positrons
by atomic beryllium in the energy range below the first inelastic thresholds
are calculated. A Ramsauer-Townsend minimum is seen in the electron scattering
cross sections, while no such effect is found in the case of positron
scattering. A minimum total cross section of 0.016 a.u. at 0.0029 eV is
observed for the electron case. In the limit of zero energy, the cross sections
yield a scattering length of -0.61 a.u. for electron and +13.8 a.u. for
positron scattering
Manifold dimension of a causal set: Tests in conformally flat spacetimes
This paper describes an approach that uses flat-spacetime dimension
estimators to estimate the manifold dimension of causal sets that can be
faithfully embedded into curved spacetimes. The approach is invariant under
coarse graining and can be implemented independently of any specific curved
spacetime. Results are given based on causal sets generated by random
sprinklings into conformally flat spacetimes in 2, 3, and 4 dimensions, as well
as one generated by a percolation dynamics.Comment: 8 pages, 8 figure
The Facilitation of Learning Groups: A Study of a Dairy Discussion Group Facilitator
Farm Management,
Spin entanglement, decoherence and Bohm's EPR paradox
We obtain criteria for entanglement and the EPR paradox
for spin-entangled particles and analyse the effects of decoherence caused
by absorption and state purity errors. For a two qubit photonic state,
entanglement can occur for all transmission efficiencies. In this case,
the state preparation purity must be above a threshold value. However,
Bohm’s spin EPR paradox can be achieved only above a critical level of
loss. We calculate a required efficiency of 58%, which appears achievable
with current quantum optical technologies. For a macroscopic number of
particles prepared in a correlated state, spin entanglement and the EPR
paradox can be demonstrated using our criteria for efficiencies η > 1/3
and η > 2/3 respectively. This indicates a surprising insensitivity to loss
decoherence, in a macroscopic system of ultra-cold atoms or photons
Operating theatre photography for orthopaedics and aesthetic surgery.
The aim of this paper is to examine the author's personal experience and practice in operating theatre photography. The ways of working are personal to the author but hopefully will help others in undertaking this type of work
Seasonal Variation in 25(OH)D at Aberdeen (57°N) and Bone Health Indicators- Could Holidays in the Sun and Cod Liver Oil Supplements Alleviate Deficiency?
Vitamin D has been linked with many health outcomes. The aim of this longitudinal study, was to assess predictors of seasonal variation of 25-hydroxy-vitamin D (25(OH)D) (including use of supplements and holidays in sunny destinations) at a northerly latitude in the UK (57°N) in relation to bone health indicators. 365 healthy postmenopausal women (mean age 62.0 y (SD 1.4)) had 25(OH)D measurements by immunoassay, serum C-telopeptide (CTX), estimates of sunlight exposure (badges of polysulphone film), information regarding holidays in sunny destinations, and diet (from food diaries, including use of supplements such as cod liver oil (CLO)) at fixed 3-monthly intervals over 15 months (subject retention 88%) with an additional 25(OH)D assessment in spring 2008. Bone mineral density (BMD) at the lumbar spine (LS) and dual hip was measured in autumn 2006 and spring 2007 (Lunar I-DXA). Deficiency prevalence (25(OH)
Experimental tests of reaction rate theory: Mu+H2 and Mu+D2
Copyright @ 1987 American Institute of Physics.Bimolecular rate constants for the thermal chemical reactions of muonium (Mu) with hydrogen and deuterium—Mu+H2→MuH+H and Mu+D2→MuD+D—over the temperature range 473–843 K are reported. The Arrhenius parameters and 1σ uncertainties for the H2 reaction are log A (cm3 molecule-1 s-1)=-9.605±0.074 and Ea =13.29±0.22 kcal mol-1, while for D2 the values are -9.67±0.12 and 14.73±0.40, respectively. These results are significantly more precise than those reported earlier by Garner et al. For the Mu reaction with H2 our results are in excellent agreement with the 3D quantum mechanical calculations of Schatz on the Liu–Siegbahn–Truhlar–Horowitz potential surface, but the data for both reactions compare less favorably with variational transition-state theory, particularly at the lower temperatures.NSERC (Canada) and the Petroleum Research Foundation of the Americal Chemical Society
Neutral thioether and selenoether macrocyclic coordination to Group 1 cations (Li–Cs) – synthesis, spectroscopic and structural properties
The complexes [M(L)][BArF] (BArF = tetrakis{3,5-bis(trifluoromethyl)-phenyl}borate), L = [18]aneO4S2 (1,4,10,13-tetraoxa-7,16-dithiacyclooctadecane): M = Li–Cs; L = [18]aneO2S4 (1,10-dioxa-4,7,13,16-tetrathiacyclooctadecane): M = Li, Na, K; L = [18]aneO4Se2 (1,4,10,13-tetraoxa-7,16-diselenacyclooctadecane): M = Na, K, as well as [Na(18-crown-6)][BArF], are obtained in good yield as crystalline solids by reaction of M[BArF] with the appropriate macrocycle in dry CH2Cl2. X-ray crystallographic analyses of [Li([18]aneO4S2)][BArF] and [Li([18]aneO2S4)][BArF] show discrete distorted octahedral cations with hexadentate coordination to the macrocycle. The heavier alkali metal complexes all contain hexadentate coordination of the heterocrown, supplemented by M?F interactions via the anions, producing extended structures with higher coordination numbers; Na: CN = 7 or 8; K: CN = 8; Rb: CN = 9; Cs: CN = 8 or 10. Notably, all of the structures exhibit significant M–S/Se coordination. The crystal structures of the potassium and rubidium complexes show two distinct [M(heterocrown)]+ cations, one with M?F interactions to two mutually cis [BArF]? anions, and the other with mutually trans [BArF]? anions, giving 1D chain polymers. Solution multinuclear (1H, 13C, 7Li, 23Na, 133Cs) NMR data show that the macrocyclic coordination is retained in CH2Cl2 solution
- …
