226 research outputs found
Innate Antiviral Immune Responses to Hepatitis B Virus
Hepatitis B virus (HBV) is a major cause of acute and chronic hepatitis in humans. As HBV itself is currently viewed as a non-cytopathic virus, the liver pathology associated with hepatitis B is mainly thought to be due to immune responses directed against HBV antigens. The outcome of HBV infection is the result of complex interactions between replicating HBV and the immune system. While the role of the adaptive immune response in the resolution of HBV infection is well understood, the contribution of innate immune mechanisms remains to be clearly defined. The innate immune system represents the first line of defense against viral infection, but its role has been difficult to analyze in humans due to late diagnosis of HBV infection. In this review, we discuss recent advances in the field of innate immunity to HBV infection
Hypoxia-inducible factor 1 alpha-mediated RelB/APOBEC3B down-regulation allows hepatitis B virus persistence
Background and Aims: Therapeutic strategies against HBV focus, among others, on the activation of the immune system to enable the infected host to eliminate HBV. Hypoxia‐inducible factor 1 alpha (HIF1α) stabilization has been associated with impaired immune responses. HBV pathogenesis triggers chronic hepatitis‐related scaring, leading inter alia to modulation of liver oxygenation and transient immune activation, both factors playing a role in HIF1α stabilization.
Approach and Results: We addressed whether HIF1α interferes with immune‐mediated induction of the cytidine deaminase, apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B; A3B), and subsequent covalently closed circular DNA (cccDNA) decay. Liver biopsies of chronic HBV (CHB) patients were analyzed by immunohistochemistry and in situ hybridization. The effect of HIF1α induction/stabilization on differentiated HepaRG or mice ± HBV ± LTβR‐agonist (BS1) was assessed in vitro and in vivo. Induction of A3B and subsequent effects were analyzed by RT‐qPCR, immunoblotting, chromatin immunoprecipitation, immunocytochemistry, and mass spectrometry. Analyzing CHB highlighted that areas with high HIF1α levels and low A3B expression correlated with high HBcAg, potentially representing a reservoir for HBV survival in immune‐active patients. In vitro, HIF1α stabilization strongly impaired A3B expression and anti‐HBV effect. Interestingly, HIF1α knockdown was sufficient to rescue the inhibition of A3B up‐regulation and ‐mediated antiviral effects, whereas HIF2α knockdown had no effect. HIF1α stabilization decreased the level of v‐rel reticuloendotheliosis viral oncogene homolog B protein, but not its mRNA, which was confirmed in vivo. Noteworthy, this function of HIF1α was independent of its partner, aryl hydrocarbon receptor nuclear translocator.
Conclusions: In conclusion, inhibiting HIF1α expression or stabilization represents an anti‐HBV strategy in the context of immune‐mediated A3B induction. High HIF1α, mediated by hypoxia or inflammation, offers a reservoir for HBV survival in vivo and should be considered as a restricting factor in the development of immune therapies
Circulating and Hepatic BDCA1+, BDCA2+, and BDCA3+ Dendritic Cells Are Differentially Subverted in Patients With Chronic HBV Infection
Background and aims: Chronic hepatitis B virus (HBV) infection is a major health burden potentially evolving toward cirrhosis and hepatocellular carcinoma. HBV physiopathology is strongly related to the host immunity, yet the mechanisms of viral evasion from immune-surveillance are still misunderstood. The immune response elicited at early stages of viral infection is believed to be important for subsequent disease outcome. Dendritic cells (DCs) are crucial immune sentinels which orchestrate antiviral immunity, which offer opportunity to pathogens to subvert them to escape immunity. Despite the pivotal role of DCs in orientating antiviral responses and determining the outcome of infection, their precise involvement in HBV pathogenesis is not fully explored.Methods: One hundred thirty chronically HBV infected patients and 85 healthy donors were enrolled in the study for blood collection, together with 29 chronically HBV infected patients and 33 non-viral infected patients that were included for liver biopsy collection. In a pioneer way, we investigated the phenotypic and functional features of both circulating and intrahepatic BDCA1+ cDC2, BDCA2+ pDCs, and BDCA3+ cDC1 simultaneously in patients with chronic HBV infection by designing a unique multi-parametric flow cytometry approach.Results: We showed modulations of the frequencies and basal activation status of blood and liver DCs associated with impaired expressions of specific immune checkpoints and TLR molecules on circulating DC subsets. Furthermore, we highlighted an impaired maturation of circulating and hepatic pDCs and cDCs following stimulation with specific TLR agonists in chronic HBV patients, associated with drastic dysfunctions in the capacity of circulating DC subsets to produce IL-12p70, TNFα, IFNα, IFNλ1, and IFNλ2 while intrahepatic DCs remained fully functional. Most of these modulations correlated with HBsAg and HBV DNA levels.Conclusion: We highlight potent alterations in the distribution, phenotype and function of all DC subsets in blood together with modulations of intrahepatic DCs, revealing that HBV may hijack the immune system by subverting DCs. Our findings provide innovative insights into the immuno-pathogenesis of HBV and the mechanisms of virus escape from immune control. Such understanding is promising for developing new therapeutic strategies restoring an efficient immune control of the virus
Meeting report: 34th international conference on antiviral research
As a result of the multiple gathering and travels restrictions during the SARS-CoV-2 pandemic, the annual meeting of the International Society for Antiviral Research (ISAR), the International Conference on Antiviral Research (ICAR), could not be held in person in 2021. Nonetheless, ISAR successfully organized a remote conference, retaining the most critical aspects of all ICARs, a collegiate gathering of researchers in academia, industry, government and non-governmental institutions working to develop, identify, and evaluate effective antiviral therapy for the benefit of all human beings. This article highlights the 2021 remote meeting, which presented the advances and objectives of antiviral and vaccine discovery, research, and development. The meeting resulted in a dynamic and effective exchange of ideas and information, positively impacting the prompt progress towards new and effective prophylaxis and therapeutics
Receptor Complementation and Mutagenesis Reveal SR-BI as an Essential HCV Entry Factor and Functionally Imply Its Intra- and Extra-Cellular Domains
HCV entry into cells is a multi-step and slow process. It is believed that the
initial capture of HCV particles by glycosaminoglycans and/or lipoprotein
receptors is followed by coordinated interactions with the scavenger receptor
class B type I (SR-BI), a major receptor of high-density lipoprotein (HDL), the
CD81 tetraspanin, and the tight junction protein Claudin-1, ultimately leading
to uptake and cellular penetration of HCV via low-pH endosomes.
Several reports have indicated that HDL promotes HCV entry through interaction
with SR-BI. This pathway remains largely elusive, although it was shown that HDL
neither associates with HCV particles nor modulates HCV binding to SR-BI. In
contrast to CD81 and Claudin-1, the importance of SR-BI has only been addressed
indirectly because of lack of cells in which functional complementation assays
with mutant receptors could be performed. Here we identified for the first time
two cell types that supported HCVpp and HCVcc entry upon ectopic SR-BI
expression. Remarkably, the undetectable expression of SR-BI in rat hepatoma
cells allowed unambiguous investigation of human SR-BI functions during HCV
entry. By expressing different SR-BI mutants in either cell line, our results
revealed features of SR-BI intracellular domains that influence HCV infectivity
without affecting receptor binding and stimulation of HCV entry induced by
HDL/SR-BI interaction. Conversely, we identified positions of SR-BI ectodomain
that, by altering HCV binding, inhibit entry. Finally, we characterized
alternative ectodomain determinants that, by reducing SR-BI cholesterol uptake
and efflux functions, abolish HDL-mediated infection-enhancement. Altogether, we
demonstrate that SR-BI is an essential HCV entry factor. Moreover, our results
highlight specific SR-BI determinants required during HCV entry and
physiological lipid transfer functions hijacked by HCV to favor infection
Fitness and infectivity of drug-resistant and cross-resistant hepatitis B virus mutants: why and how is it studied?
Therapies against chronic hepatitis B infections: The times they are a-changin’, but the changing is slow!
- …
