638 research outputs found

    Antimatroids and Balanced Pairs

    Full text link
    We generalize the 1/3-2/3 conjecture from partially ordered sets to antimatroids: we conjecture that any antimatroid has a pair of elements x,y such that x has probability between 1/3 and 2/3 of appearing earlier than y in a uniformly random basic word of the antimatroid. We prove the conjecture for antimatroids of convex dimension two (the antimatroid-theoretic analogue of partial orders of width two), for antimatroids of height two, for antimatroids with an independent element, and for the perfect elimination antimatroids and node search antimatroids of several classes of graphs. A computer search shows that the conjecture is true for all antimatroids with at most six elements.Comment: 16 pages, 5 figure

    Happy endings for flip graphs

    Full text link
    We show that the triangulations of a finite point set form a flip graph that can be embedded isometrically into a hypercube, if and only if the point set has no empty convex pentagon. Point sets of this type include convex subsets of lattices, points on two lines, and several other infinite families. As a consequence, flip distance in such point sets can be computed efficiently.Comment: 26 pages, 15 figures. Revised and expanded for journal publicatio

    Optimally fast incremental Manhattan plane embedding and planar tight span construction

    Full text link
    We describe a data structure, a rectangular complex, that can be used to represent hyperconvex metric spaces that have the same topology (although not necessarily the same distance function) as subsets of the plane. We show how to use this data structure to construct the tight span of a metric space given as an n x n distance matrix, when the tight span is homeomorphic to a subset of the plane, in time O(n^2), and to add a single point to a planar tight span in time O(n). As an application of this construction, we show how to test whether a given finite metric space embeds isometrically into the Manhattan plane in time O(n^2), and add a single point to the space and re-test whether it has such an embedding in time O(n).Comment: 39 pages, 15 figure

    Metric Dimension Parameterized by Max Leaf Number

    Full text link
    The metric dimension of a graph is the size of the smallest set of vertices whose distances distinguish all pairs of vertices in the graph. We show that this graph invariant may be calculated by an algorithm whose running time is linear in the input graph size, added to a function of the largest possible number of leaves in a spanning tree of the graph.Comment: 11 pages, 2 figures; to appear in J. Graph Algorithms & Application

    Diameter and Treewidth in Minor-Closed Graph Families

    Full text link
    It is known that any planar graph with diameter D has treewidth O(D), and this fact has been used as the basis for several planar graph algorithms. We investigate the extent to which similar relations hold in other graph families. We show that treewidth is bounded by a function of the diameter in a minor-closed family, if and only if some apex graph does not belong to the family. In particular, the O(D) bound above can be extended to bounded-genus graphs. As a consequence, we extend several approximation algorithms and exact subgraph isomorphism algorithms from planar graphs to other graph families.Comment: 15 pages, 12 figure

    Recognizing Partial Cubes in Quadratic Time

    Full text link
    We show how to test whether a graph with n vertices and m edges is a partial cube, and if so how to find a distance-preserving embedding of the graph into a hypercube, in the near-optimal time bound O(n^2), improving previous O(nm)-time solutions.Comment: 25 pages, five figures. This version significantly expands previous versions, including a new report on an implementation of the algorithm and experiments with i
    • …
    corecore