638 research outputs found
Antimatroids and Balanced Pairs
We generalize the 1/3-2/3 conjecture from partially ordered sets to
antimatroids: we conjecture that any antimatroid has a pair of elements x,y
such that x has probability between 1/3 and 2/3 of appearing earlier than y in
a uniformly random basic word of the antimatroid. We prove the conjecture for
antimatroids of convex dimension two (the antimatroid-theoretic analogue of
partial orders of width two), for antimatroids of height two, for antimatroids
with an independent element, and for the perfect elimination antimatroids and
node search antimatroids of several classes of graphs. A computer search shows
that the conjecture is true for all antimatroids with at most six elements.Comment: 16 pages, 5 figure
Happy endings for flip graphs
We show that the triangulations of a finite point set form a flip graph that
can be embedded isometrically into a hypercube, if and only if the point set
has no empty convex pentagon. Point sets of this type include convex subsets of
lattices, points on two lines, and several other infinite families. As a
consequence, flip distance in such point sets can be computed efficiently.Comment: 26 pages, 15 figures. Revised and expanded for journal publicatio
Optimally fast incremental Manhattan plane embedding and planar tight span construction
We describe a data structure, a rectangular complex, that can be used to
represent hyperconvex metric spaces that have the same topology (although not
necessarily the same distance function) as subsets of the plane. We show how to
use this data structure to construct the tight span of a metric space given as
an n x n distance matrix, when the tight span is homeomorphic to a subset of
the plane, in time O(n^2), and to add a single point to a planar tight span in
time O(n). As an application of this construction, we show how to test whether
a given finite metric space embeds isometrically into the Manhattan plane in
time O(n^2), and add a single point to the space and re-test whether it has
such an embedding in time O(n).Comment: 39 pages, 15 figure
Metric Dimension Parameterized by Max Leaf Number
The metric dimension of a graph is the size of the smallest set of vertices
whose distances distinguish all pairs of vertices in the graph. We show that
this graph invariant may be calculated by an algorithm whose running time is
linear in the input graph size, added to a function of the largest possible
number of leaves in a spanning tree of the graph.Comment: 11 pages, 2 figures; to appear in J. Graph Algorithms & Application
Recommended from our members
Offline algorithms for dynamic minimum spanning tree problems
We describe an efficient algorithm for maintaining a minimum spanning tree (MST) in a graph subject to a sequence of edge weight modifications. The sequence of minimum spanning trees is computed offline, after the sequence of modifications is known. The algorithm performs (log n) work per modification, where n is the number of vertices in the graph. We use our techniques to solve the offline geometric MST problem for a planar point set subject to insertions and deletions; our algorithm for this problem performs O(log^2 n) work per modification. No previous dynamic geometric MST algorithm was known
Diameter and Treewidth in Minor-Closed Graph Families
It is known that any planar graph with diameter D has treewidth O(D), and
this fact has been used as the basis for several planar graph algorithms. We
investigate the extent to which similar relations hold in other graph families.
We show that treewidth is bounded by a function of the diameter in a
minor-closed family, if and only if some apex graph does not belong to the
family. In particular, the O(D) bound above can be extended to bounded-genus
graphs. As a consequence, we extend several approximation algorithms and exact
subgraph isomorphism algorithms from planar graphs to other graph families.Comment: 15 pages, 12 figure
Recognizing Partial Cubes in Quadratic Time
We show how to test whether a graph with n vertices and m edges is a partial
cube, and if so how to find a distance-preserving embedding of the graph into a
hypercube, in the near-optimal time bound O(n^2), improving previous O(nm)-time
solutions.Comment: 25 pages, five figures. This version significantly expands previous
versions, including a new report on an implementation of the algorithm and
experiments with i
- …
