10,187 research outputs found

    The Entire Virial Radius of the Fossil Cluster RXJ1159+5531: I. Gas Properties

    Get PDF
    Previous analysis of the fossil-group/cluster RXJ1159+5531 with X-ray observations from a central Chandra pointing and an offset-North Suzaku pointing indicate a radial intracluster medium (ICM) entropy profile at the virial radius (RvirR_{\rm vir}) consistent with predictions from gravity-only cosmological simulations, in contrast to other cool-core clusters. To examine the generality of these results, we present three new Suzaku observations that, in conjunction with the North pointing, provide complete azimuthal coverage out to RvirR_{\rm vir}. With two new Chandra ACIS-I observations overlapping the North Suzaku pointing, we have resolved \gtrsim50\% of the cosmic X-ray background there. We present radial profiles of the ICM density, temperature, entropy, and pressure obtained for each of the four directions. We measure only modest azimuthal scatter in the ICM properties at R200R_{\rm 200} between the Suzaku pointings: 7.6\% in temperature and 8.6\% in density, while the systematic errors can be significant. The temperature scatter, in particular, is lower than that studied at R200R_{\rm 200} for a small number of other clusters observed with Suzaku. These azimuthal measurements verify that RXJ1159+5531 is a regular, highly relaxed system. The well-behaved entropy profiles we have measured for RXJ1159+5531 disfavor the weakening of the accretion shock as an explanation of the entropy flattening found in other cool-core clusters but is consistent with other explanations such as gas clumping, electron-ion non-equilibrium, non-thermal pressure support, and cosmic ray acceleration. Finally, we mention that the large-scale galaxy density distribution of RXJ1159+5531 seems to have little impact on its gas properties near RvirR_{\rm vir}.Comment: Accepted for publication in Ap

    CM relations in fibered powers of elliptic families

    Full text link
    Let EλE_\lambda be the Legendre family of elliptic curves. Given nn linearly independent points P1,,PnEλ(Q(λ))P_1,\dots , P_n \in E_\lambda\left(\overline{\mathbb{Q}(\lambda)}\right) we prove that there are at most finitely many complex numbers λ0\lambda_0 such that Eλ0E_{\lambda_0} has complex multiplication and P1(λ0),,Pn(λ0)P_1(\lambda_0), \dots ,P_n(\lambda_0) are dependent over End(Eλ0)End(E_{\lambda_0}). This implies a positive answer to a question of Bertrand and, combined with a previous work in collaboration with Capuano, proves the Zilber-Pink conjecture for a curve in a fibered power of an elliptic scheme when everything is defined over Q\overline{\mathbb{Q}}.Comment: The formulation of Theorem 2.1 is now correc

    Hydrostatic Gas Constraints On Supermassive Black Hole Masses: Implications For Hydrostatic Equilibrium And Dynamical Modeling In A Sample Of Early-Type Galaxies

    Get PDF
    We present new mass measurements for the supermassive black holes (SMBHs) in the centers of three early-type galaxies. The gas pressure in the surrounding, hot interstellar medium (ISM) is measured through spatially resolved spectroscopy with the Chandra X-ray Observatory, allowing the SMBH mass (M(BH)) to be inferred directly under the hydrostatic approximation. This technique does not require calibration against other SMBH measurement methods and its accuracy depends only on the ISM being close to hydrostatic, which is supported by the smooth X-ray isophotes of the galaxies. Combined with results from our recent study of the elliptical galaxy NGC4649, this brings the number of galaxies with SMBHs measured in this way to four. Of these, three already have mass determinations from the kinematics of either the stars or a central gas disk, and hence join only a handful of galaxies with MBH measured by more than one technique. We find good agreement between the different methods, providing support for the assumptions implicit in both the hydrostatic and the dynamical models. The stellar mass-to-light ratios for each galaxy inferred by our technique are in agreement with the predictions of stellar population synthesis models assuming a Kroupa initial mass function (IMF). This concurrence implies that no more than similar to 10%-20% of the ISM pressure is nonthermal, unless there is a conspiracy between the shape of the IMF and nonthermal pressure. Finally, we compute Bondi accretion rates (M(bondi)), finding that the two galaxies with the highest M(bondi) exhibit little evidence of X-ray cavities, suggesting that the correlation with the active galactic nuclei jet power takes time to be established.NASA NAS5-26555, NNG04GE76G, G07-8083XAstronom

    High Conductance Ratio in Molecular Optical Switching of Functionalized Nanoparticle Self-Assembled Nanodevices

    Full text link
    Self-assembled functionalized nano particles are at the focus of a number of potential applications, in particular for molecular scale electronics devices. Here we perform experiments of self-assembly of 10 nm Au nano particles (NPs), functionalized by a dense layer of azobenzene-bithiophene (AzBT) molecules, with the aim of building a light-switchable device with memristive properties. We fabricate planar nanodevices consisting of NP self-assembled network (NPSANs) contacted by nanoelectrodes separated by interelectrode gaps ranging from 30 to 100 nm. We demonstrate the light-induced reversible switching of the electrical conductance in these AzBT NPSANs with a record on/off conductance ratio up to 620, an average value of ca. 30 and with 85% of the devices having a ratio above 10. Molecular dynamics simulation of the structure and dynamics of the interface between molecular monolayers chemisorbed on the nano particle surface are performed and compared to the experimental findings. The properties of the contact interface are shown to be strongly correlated to the molecular conformation which in the case of AzBT molecules, can reversibly switched between a cis and a trans form by means of light irradiations of well-defined wavelength. Molecular dynamics simulations provide a microscopic explanation for the experimental observation of the reduction of the on/off current ratio between the two isomers, compared to experiments performed on flat self-assembled monolayers contacted by a conducting cAFM tip.Comment: pdf files : publication and supporting informatio

    Updated analysis of the dynamical relation between asteroid 2003 EH1 and comets C/1490 Y1 and C/1385 U1

    Full text link
    The asteroid 2003 EH1, proposed as the parent body of the Quadrantid meteor shower, is thought to be the remnant of a past cometary object, tentatively identified with the historical comets C/1490 Y1 and C/1385 U1. In the present work we use recovery astrometry to extend the observed arc of 2003 EH1 from 10 months to about 5 years, enough to exclude the proposed direct relationship of the asteroid with both of the comets.Comment: Submitted to Monthly Notices of the RAS Letters Updated with a new table and other minor change

    ALMA observations of molecular clouds in three group centered elliptical galaxies: NGC 5846, NGC 4636, and NGC 5044

    Get PDF
    We present new ALMA CO(2--1) observations of two well studied group-centered elliptical galaxies: NGC~4636 and NGC~5846. In addition, we include a revised analysis of Cycle 0 ALMA observations of the central galaxy in the NGC~5044 group that has been previously published. We find evidence that molecular gas, in the form of off-center orbiting clouds, is a common presence in bright group-centered galaxies (BGG). CO line widths are 10\gtrsim 10 times broader than Galactic molecular clouds, and using the reference Milky Way XCOX_{CO}, the total molecular mass ranges from as low as 2.6×105M2.6\times 10^5 M_\odot in NGC~4636 to 6.1×107M6.1\times 10^7 M_\odot in NGC~5044. With these parameters the virial parameters of the molecular structures is 1\gg 1. Complementary observations of NGC~5846 and NGC~4636 using the ALMA Compact Array (ACA) do not exhibit any detection of a CO diffuse component at the sensitivity level achieved by current exposures. The origin of the detected molecular features is still uncertain, but these ALMA observations suggest that they are the end product of the hot gas cooling process and not the result of merger events. Some of the molecular clouds are associated with dust features as revealed by HST dust extinction maps suggesting that these clouds formed from dust-enhanced cooling. The global nonlinear condensation may be triggered via the chaotic turbulent field or buoyant uplift. The large virial parameter of the molecular structures and correlation with the warm (103105K10^3 - 10^5 K)/hot (106\ge10^6) phase velocity dispersion provide evidence that they are unbound giant molecular associations drifting in the turbulent field, consistently with numerical predictions of the chaotic cold accretion process. Alternatively, the observed large CO line widths may be generated by molecular gas flowing out from cloud surfaces due to heating by the local hot gas atmosphere.Comment: Revised version to be published in ApJ, 16 pages, 10 figures, 4 table

    Nonrepetitive Colourings of Planar Graphs with O(logn)O(\log n) Colours

    Get PDF
    A vertex colouring of a graph is \emph{nonrepetitive} if there is no path for which the first half of the path is assigned the same sequence of colours as the second half. The \emph{nonrepetitive chromatic number} of a graph GG is the minimum integer kk such that GG has a nonrepetitive kk-colouring. Whether planar graphs have bounded nonrepetitive chromatic number is one of the most important open problems in the field. Despite this, the best known upper bound is O(n)O(\sqrt{n}) for nn-vertex planar graphs. We prove a O(logn)O(\log n) upper bound
    corecore