121 research outputs found

    Characterizing Spatial Variability of Ice Algal Chlorophyll a and Net Primary Production between Sea Ice Habitats Using Horizontal Profiling Platforms

    Get PDF
    Assessing the role of sea ice algal biomass and primary production for polar ecosystems remains challenging due to the strong spatio-temporal variability of sea ice algae. Therefore, the spatial representativeness of sea ice algal biomass and primary production sampling remains a key issue in large-scale models and climate change predictions of polar ecosystems. To address this issue, we presented two novel approaches to up-scale ice algal chl a biomass and net primary production (NPP) estimates based on profiles covering distances of 100 to 1,000 s of meters. This was accomplished by combining ice core-based methods with horizontal under-ice spectral radiation profiling conducted in the central Arctic Ocean during summer 2012. We conducted a multi-scale comparison of ice-core based ice algal chl a biomass with two profiling platforms: a remotely operated vehicle and surface and under ice trawl (SUIT). NPP estimates were compared between ice cores and remotely operated vehicle surveys. Our results showed that ice core-based estimates of ice algal chl a biomass and NPP do not representatively capture the spatial variability compared to the remotely operated vehicle-based estimates, implying considerable uncertainties for pan-Arctic estimates based on ice core observations alone. Grouping sea ice cores based on region or ice type improved the representativeness. With only a small sample size, however, a high risk of obtaining non-representative estimates remains. Sea ice algal chl a biomass estimates based on the dominant ice class alone showed a better agreement between ice core and remotely operated vehicle estimates. Grouping ice core measurements yielded no improvement in NPP estimates, highlighting the importance of accounting for the spatial variability of both the chl a biomass and bottom-ice light in order to get representative estimates. Profile-based measurements of ice algae chl a biomass identified sea ice ridges as an underappreciated component of the Arctic ecosystem because chl a biomass was significantly greater in this unique habitat. Sea ice ridges are not easily captured with ice coring methods and thus require more attention in future studies. Based on our results, we provide recommendations for designing an efficient and effective sea ice algal sampling program for the summer season

    Modeling the Stability of SARS-CoV-2 on Personal Protective Equipment (PPE)

    No full text
    ABSTRACTWe modeled the stability of SARS-CoV-2 on personal protective equipment (PPE) commonly worn in hospitals when carrying out high-risk airway procedures. Evaluated PPE included the visors and hoods of two brands of commercially available powered air purifying respirators, a disposable face shield, and Tyvek coveralls. Following an exposure to 4.3 log10 plaque-forming units (PFUs) of SARS-CoV-2, all materials displayed a reduction in titer of &gt; 4.2 log10 by 72 hours postexposure, with detectable titers at 72 hours varying by material (1.1–2.3 log10 PFU/mL). Our results highlight the need for proper doffing and disinfection of PPE, or disposal, to reduce the risk of SARS-CoV-2 contact or fomite transmission.</jats:p

    Activation of Toll-Like Receptors by Live Gram-Negative Bacterial Pathogens Reveals Mitigation of TLR4 Responses and Activation of TLR5 by Flagella

    No full text
    Successful bacterial pathogens have evolved to avoid activating an innate immune system in the host that responds to the pathogen through distinct Toll-like receptors (TLRs). The general class of biochemical components that activate TLRs has been studied extensively, but less is known about how TLRs interact with the class of compounds that are still associated with the live pathogen. Accordingly, we examined the activation of surface assembled TLR 2, 4, and 5 with live Tier 1 Gram-negative pathogens that included Yersinia pestis (plague), Burkholderia mallei (glanders), Burkholderia pseudomallei (melioidosis), and Francisella tularensis (tularemia). We found that Y. pestis CO92 grown at 28°C activated TLR2 and TLR4, but at 37°C the pathogen activated primarily TLR2. Although B. mallei and B. pseudomallei are genetically related, the former microorganism activated predominately TLR4, while the latter activated predominately TLR2. The capsule of wild-type B. pseudomallei 1026b was found to mitigate the activation of TLR2 and TLR4 when compared to a capsule mutant. Live F. tularensis (Ft) Schu S4 did not activate TLR2 or 4, although the less virulent Ft LVS and F. novicida activated only TLR2. B. pseudomallei purified flagellin or flagella attached to the microorganism activated TLR5. Activation of TLR5 was abolished by an antibody to TLR5, or a mutation of fliC, or elimination of the pathogen by filtration. In conclusion, we have uncovered new properties of the Gram-negative pathogens, and their interaction with TLRs of the host. Further studies are needed to include other microorganism to extend our observations with their interaction with TLRs, and to the possibility of leading to new efforts in therapeutics against these pathogens.</jats:p

    Mid-Tibiofibular Amputation as a Method of Terminal Blood Collection in <i> Xenopus</i> <i> Laevis</i>

    Full text link
    The African clawed frog, Xenopus laevis, is a widely used model for biomedical research. X. laevis could be more useful as a model with a better method for collection and analysis of its blood and serum. However, blood collection in X. laevis can be challenging due to their small size, lack of peripheral vascular access, and species-specific hematology variables. The goal of this study was to compare cardiocentesis, the current gold standard terminal blood collection method, with a leg amputation technique. Blood samples were collected from 24 laboratory-reared X. laevis, randomized to either the cardiocentesis or leg amputation method, with 6 males and 6 females in each group. Hematology and serum biochemistry were also conducted to identify any lymph contamination in the samples. The leg amputation method produced significantly higher blood volumes in shorter times and showed no significant differences in clinical pathology parameters as compared with cardiocentesis. These results indicate that blood collection by leg amputation may be a valuable approach for increasing the utility of an already valuable biomedical research model.</jats:p

    Phase Variation of LPS and Capsule Is Responsible for Stochastic Biofilm Formation in Francisella tularensis

    No full text
    Biofilms have been established as an important lifestyle for bacteria in nature as these structured communities often enable survivability and persistence in a multitude of environments.Francisella tularensisis a facultative intracellular Gram-negative bacterium found throughout much of the northern hemisphere. However, biofilm formation remains understudied and poorly understood inF. tularensisas non-substantial biofilms are typically observedin vitroby the clinically relevant subspeciesF. tularensissubsp.tularensisandF. tularensissubsp.holarctica(Type A and B, respectively). Herein, we report conditions under which robust biofilm development was observed in a stochastic, but reproducible manner in Type A and B isolates. The frequency at which biofilm was observed increased temporally and appeared switch-like as progeny from the initial biofilm quickly formed biofilm in a predictable manner regardless of time or propagation with fresh media. The Type B isolates used for this study were found to more readily switch on biofilm formation than Type A isolates. Additionally, pH was found to function as an environmental checkpoint for biofilm initiation independently of the heritable cellular switch. Multiple colony morphologies were observed in biofilm positive cultures leading to the identification of a particular subset of grey variants that constitutively produce biofilm. Further, we found that constitutive biofilm forming isolates delay the onset of a viable non-culturable state. In this study, we demonstrate that a robust biofilm can be developed by clinically relevantF. tularensisisolates, provide a mechanism for biofilm initiation and examine the potential role of biofilm formation.</jats:p
    corecore