10,282 research outputs found
Explicit concave fillings of contact three-manifolds
In this paper we give explicit, handle-by-handle constructions of concave
symplectic fillings of all closed, oriented contact 3-manifolds. These
constructions combine recent results of Giroux relating contact structures and
open book decompositions of 3-manifolds, earlier results of the author on
attaching 4-dimensional symplectic 2-handles along transverse links, and some
tricks with mapping class groups of compact surfaces with non-empty boundary.Comment: 15 pages. Accepted for publication in the Mathematical Proceedings of
the Cambridge Philosophical Society. Current version is identical to final
version submitted to the journal, differs from original version only in some
notation and minor editorial change
Representing Symmetric Rank Two Updates
Various quasi-Newton methods periodically add a symmetric "correction" matrix of rank at most 2 to a matrix approximating some quantity A of interest (such as the Hessian of an objective function). In this paper we examine several ways to express a symmetric rank 2 matrix [delta] as the sum of rank 1 matrices. We show that it is easy to compute rank 1 matrices [delta1] and [delta2] such that [delta] = [delta1] + [delta2] and [the norm of delta1]+ [the norm of delta2] is minimized, where ||.|| is any inner product norm. Such a representation recommends itself for use in those computer programs that maintain A explicitly, since it should reduce cancellation errors and/or improve efficiency over other representations. In the common case where [delta] is indefinite, a choice of the form [delta1] = [delta2 to the power of T] = [xy to the power of T] appears best. This case occurs for rank 2 quasi- Newton updates [delta] exactly when [delta] may be obtained by symmetrizing some rank 1 update; such popular updates as the DFP, BFGS, PSB, and Davidon's new optimally conditioned update fall into this category.
Reconstructing 4-manifolds from Morse 2-functions
Given a Morse 2-function , we give minimal conditions on the
fold curves and fibers so that and can be reconstructed from a
certain combinatorial diagram attached to . Additional remarks are made in
other dimensions.Comment: 13 pages, 10 figures. Replaced because the main theorem in the
original is false. The theorem has been corrected and counterexamples to the
original statement are give
Constructing symplectic forms on 4-manifolds which vanish on circles
Given a smooth, closed, oriented 4-manifold X and alpha in H_2(X,Z) such that
alpha.alpha > 0, a closed 2-form w is constructed, Poincare dual to alpha,
which is symplectic on the complement of a finite set of unknotted circles. The
number of circles, counted with sign, is given by d = (c_1(s)^2 -3sigma(X)
-2chi(X))/4, where s is a certain spin^C structure naturally associated to w.Comment: Published by Geometry and Topology at
http://www.maths.warwick.ac.uk/gt/GTVol8/paper20.abs.htm
Solving Systems of Non-Linear Equations by Broyden's Method with Projected Updates
We introduce a modification of Broyden's method for finding a zero of n nonlinear equations in n unknowns when analytic derivatives are not available. The method retains the local Q-superlinear convergence of Broyden's method and has the additional property that if any or all of the equations are linear, it locates a zero of these equations in n+1 or fewer iterations. Limited computational experience suggests that our modification often improves upon Eroyden's method.
- …
