7,858 research outputs found

    Isospectral deformations of closed Riemannian manifolds with different scalar curvature

    Get PDF
    We construct the first examples of continuous families of isospectral Riemannian metrics that are not locally isometric on closed manifolds, more precisely, on Sn×TmS^n\times T^m, where TmT^m is a torus of dimension m2m\ge 2 and SnS^n is a sphere of dimension n4n\ge 4. These metrics are not locally homogeneous; in particular, the scalar curvature of each metric is nonconstant. For some of the deformations, the maximum scalar curvature changes during the deformation.Comment: amstex, 10 pages, no figure

    Cu(0)-mediated living radical polymerisation in dimethyl lactamide (DML) : an unusual green solvent with limited environmental impact

    Get PDF
    The synthesis of poly-acrylates, methacrylates and styrene derivatives by SET-LRP is reported in a user and environmentally friendly “green” solvent, dimethyl lactamide (DML). The occurrence of a SET-LRP mechanism in DML was demonstrated via UV-Vis spectroscopy measurements following the disproportionation of Cu(I) in the presence of N-containing ligands. The synthesis of hydrophobic and hydrophilic poly acrylate and methacrylate (methyl, n-butyl, lauryl, poly(ethylene glycol), 2-hydroxyethyl and 2-(dimethyamino)ethyl derivatives) and styrene was investigated. The controlled behaviour of the polymerisation was observed via kinetic experiments. Finally the possibility to produced well-defined polymers with functional chain-ends was demonstrated with the SET-LRP of poly(ethylene glycol) methyl ether acrylate

    Improvements to the APBS biomolecular solvation software suite

    Full text link
    The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that has provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this manuscript, we discuss the models and capabilities that have recently been implemented within the APBS software package including: a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory based algorithm for determining pKaK_a values, and an improved web-based visualization tool for viewing electrostatics

    Discovery and genotyping of structural variation from long-read haploid genome sequence data

    Get PDF
    In an effort to more fully understand the full spectrum of human genetic variation, we generated deep single-molecule, real-time (SMRT) sequencing data from two haploid human genomes. By using an assembly-based approach (SMRT-SV), we systematically assessed each genome independently for structural variants (SVs) and indels resolving the sequence structure of 461,553 genetic variants from 2 bp to 28 kbp in length. We find that &gt;89% of these variants have been missed as part of analysis of the 1000 Genomes Project even after adjusting for more common variants (MAF &gt; 1%). We estimate that this theoretical human diploid differs by as much as ∼16 Mbp with respect to the human reference, with long-read sequencing data providing a fivefold increase in sensitivity for genetic variants ranging in size from 7 bp to 1 kbp compared with short-read sequence data. Although a large fraction of genetic variants were not detected by short-read approaches, once the alternate allele is sequence-resolved, we show that 61% of SVs can be genotyped in short-read sequence data sets with high accuracy. Uncoupling discovery from genotyping thus allows for the majority of this missed common variation to be genotyped in the human population. Interestingly, when we repeat SV detection on a pseudodiploid genome constructed in silico by merging the two haploids, we find that ∼59% of the heterozygous SVs are no longer detected by SMRT-SV. These results indicate that haploid resolution of long-read sequencing data will significantly increase sensitivity of SV detection.</jats:p

    Dynamic habitat corridors for marine predators : intensive use of a coastal channel by harbour seals is modulated by tidal currents

    Get PDF
    The work was funded by the UK’s Natural Environment Research Council, the Department for Environment Food and Rural Affairs (RESPONSE project, NE/J004251/1 and NERC National Capability SMRU1001), Scottish Natural Heritage and Marine ScotlandPrevious studies have found that predators utilise habitat corridors to ambush prey moving through them. In the marine environment, coastal channels effectively act as habitat corridors for prey movements, and sightings of predators in such areas suggest that they may target these for foraging. Unlike terrestrial systems where the underlying habitat structure is generally static, corridors in marine systems are in episodic flux due to water movements created by tidal processes. Although these hydrographic features can be highly complex, there is generally a predictable underlying cyclic tidal pattern to their structure. For marine predators that must find prey that is often patchy and widely distributed, the underlying temporal predictability in potential foraging opportunities in marine corridors may be important drivers in their use. Here we used data from land-based sightings and nineteen harbour seals (Phoca vitulina) tagged with high-resolution GPS telemetry to investigate the spatial and temporal distribution patterns of seals in a narrow tidal channel. These seals showed a striking pattern in their distribution; all seals spent a high proportion of their time around the narrowest point of the channel. There was also a distinctive tidal pattern in the use of the channel; sightings of seals in the water peaked during the flood tide and were at a minimum during the ebb tide. This pattern is likely to be related to prey availability and/or foraging efficiency driven by the underlying tidal pattern in the water movements through the channel.Publisher PDFPeer reviewe

    Molecular genetics and pathophysiology of 17 beta-hydroxysteroid dehydrogenase 3 deficiency.

    Get PDF
    Autosomal recessive mutations in the 17 beta-hydroxysteroid dehydrogenase 3 gene impair the formation of testosterone in the fetal testis and give rise to genetic males with female external genitalia. Such individuals are usually raised as females, but virilize at the time of expected puberty as the result of increases in serum testosterone. Here we describe mutations in 12 additional subjects/families with this disorder. The 14 mutations characterized to date include 10 missense mutations, 3 splice junction abnormalities, and 1 small deletion that results in a frame shift. Three of these mutations have occurred in more than 1 family. Complementary DNAs incorporating 9 of the 10 missense mutations have been constructed and expressed in reporter cells; 8 of the 9 missense mutations cause almost complete loss of enzymatic activity. In 2 subjects with loss of function, missense mutations testosterone levels in testicular venous blood were very low. Considered together, these findings strongly suggest that the common mechanism for testosterone formation in postpubertal subjects with this disorder is the conversion of circulating androstenedione to testosterone by one or more of the unaffected 17 beta-hydroxysteroid dehydrogenase isoenzymes
    corecore