3,057 research outputs found
Plasmonic nanogap enhanced phase change devices with dual electrical-optical functionality
Modern-day computers use electrical signaling for processing and storing data
which is bandwidth limited and power-hungry. These limitations are bypassed in
the field of communications, where optical signaling is the norm. To exploit
optical signaling in computing, however, new on-chip devices that work
seamlessly in both electrical and optical domains are needed. Phase change
devices can in principle provide such functionality, but doing so in a single
device has proved elusive due to conflicting requirements of size-limited
electrical switching and diffraction-limited photonic devices. Here, we combine
plasmonics, photonics and electronics to deliver a novel integrated
phase-change memory and computing cell that can be electrically or optically
switched between binary or multilevel states, and read-out in either mode, thus
merging computing and communications technologies
Recommended from our members
Spatial housing economics: a survey
This introduction to the Virtual Special Issue surveys the development of spatial housing economics from its roots in neo-classical theory, through more recent developments in social interactions modelling, and touching on the role of institutions, path dependence and economic history. The survey also points to some of the more promising future directions for the subject that are beginning to appear in the literature. The survey covers elements hedonic models, spatial econometrics, neighbourhood models, housing market areas, housing supply, models of segregation, migration, housing tenure, sub-national house price modelling including the so-called ripple effect, and agent-based models. Possible future directions are set in the context of a selection of recent papers that have appeared in Urban Studies. Nevertheless, there are still important gaps in the literature that merit further attention, arising at least partly from emerging policy problems. These include more research on housing and biodiversity, the relationship between housing and civil unrest, the effects of changing age distributions - notably housing for the elderly - and the impact of different international institutional structures. Methodologically, developments in Big Data provide an exciting framework for future work
Supersymmetric Vacua in Random Supergravity
We determine the spectrum of scalar masses in a supersymmetric vacuum of a
general N=1 supergravity theory, with the Kahler potential and superpotential
taken to be random functions of N complex scalar fields. We derive a random
matrix model for the Hessian matrix and compute the eigenvalue spectrum.
Tachyons consistent with the Breitenlohner-Freedman bound are generically
present, and although these tachyons cannot destabilize the supersymmetric
vacuum, they do influence the likelihood of the existence of an `uplift' to a
metastable vacuum with positive cosmological constant. We show that the
probability that a supersymmetric AdS vacuum has no tachyons is formally
equivalent to the probability of a large fluctuation of the smallest eigenvalue
of a certain real Wishart matrix. For normally-distributed matrix entries and
any N, this probability is given exactly by P = exp(-2N^2|W|^2/m_{susy}^2),
with W denoting the superpotential and m_{susy} the supersymmetric mass scale;
for more general distributions of the entries, our result is accurate when N >>
1. We conclude that for |W| \gtrsim m_{susy}/N, tachyonic instabilities are
ubiquitous in configurations obtained by uplifting supersymmetric vacua.Comment: 26 pages, 6 figure
Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function
We evaluate the one loop determinant of matter multiplet fields of N=4
supergravity in the near horizon geometry of quarter BPS black holes, and use
it to calculate logarithmic corrections to the entropy of these black holes
using the quantum entropy function formalism. We show that even though
individual fields give non-vanishing logarithmic contribution to the entropy,
the net contribution from all the fields in the matter multiplet vanishes. Thus
logarithmic corrections to the entropy of quarter BPS black holes, if present,
must be independent of the number of matter multiplet fields in the theory.
This is consistent with the microscopic results. During our analysis we also
determine the complete spectrum of small fluctuations of matter multiplet
fields in the near horizon geometry.Comment: LaTeX file, 52 pages; v2: minor corrections, references adde
Re-organisation of oesophago-gastric cancer care in England: progress and remaining challenges
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Oesophago-gastric cancer services in England have been extensively reorganised since 2001 to deliver a centralised, specialist-led service. Our aim was to assess how well the National Health Service (NHS) in England met organisational standards for oesophago-gastric cancer care. Methods Questionnaires that asked about the provision of staging investigations, curative and palliative treatments and key personnel were sent in September 2007 to the lead clinician for oesophago-gastric cancer at all 30 cancer networks and 156 NHS acute trusts in England. Results Responses were received from all networks and 81% of NHS trusts. All networks provided essential staging investigations and a range of endoscopic palliative therapies. Only 16 of the 30 cancer networks discussed all patients at the specialist multi-disciplinary team meeting and 11 networks had not fully centralised curative surgery. There was also variation between NHS trusts in the integration of the palliative care team, the availability of nurse specialists and the use of dieticians to provide nutritional support. Conclusion There has been considerable progress in reforming oesophago-gastric cancer services but the process of reorganisation is still incomplete and regional differences in service provision exist that may lead to variation in patient outcomes.Published versio
Macroscopic transport by synthetic molecular machines
Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with—and perform physical tasks in—the macroscopic world represents a significant hurdle for molecular nanotechnology. Here we describe a wholly synthetic molecular system that converts an external energy source (light) into biased brownian motion to transport a macroscopic cargo and do measurable work. The millimetre-scale directional transport of a liquid on a surface is achieved by using the biased brownian motion of stimuli-responsive rotaxanes (‘molecular shuttles’) to expose or conceal fluoroalkane residues and thereby modify surface tension. The collective operation of a monolayer of the molecular shuttles is sufficient to power the movement of a microlitre droplet of diiodomethane up a twelve-degree incline.
Metabolomics to unveil and understand phenotypic diversity between pathogen populations
Visceral leishmaniasis is caused by a parasite called Leishmania donovani, which every year infects about half a million people and claims several thousand lives. Existing treatments are now becoming less effective due to the emergence of drug resistance. Improving our understanding of the mechanisms used by the parasite to adapt to drugs and achieve resistance is crucial for developing future treatment strategies. Unfortunately, the biological mechanism whereby Leishmania acquires drug resistance is poorly understood. Recent years have brought new technologies with the potential to increase greatly our understanding of drug resistance mechanisms. The latest mass spectrometry techniques allow the metabolome of parasites to be studied rapidly and in great detail. We have applied this approach to determine the metabolome of drug-sensitive and drug-resistant parasites isolated from patients with leishmaniasis. The data show that there are wholesale differences between the isolates and that the membrane composition has been drastically modified in drug-resistant parasites compared with drug-sensitive parasites. Our findings demonstrate that untargeted metabolomics has great potential to identify major metabolic differences between closely related parasite strains and thus should find many applications in distinguishing parasite phenotypes of clinical relevance
Seasonal changes in patterns of gene expression in avian song control brain regions.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity
Intuitive and Informal Knowledge in Preschoolers’ Development of Probabilistic Thinking
Preschoolers develop a wide range of mathematical informal knowledge and intuitive thinking before they enter formal, goal-oriented education. In their everyday activities young children get engaged with situations that enhance them to develop skills, concepts, strategies, representations, attitudes, constructs and operations concerning a wide range of mathematical notions. Recently there is scientific interest in linking children’s informal and formal knowledge in order to provide them with opportunities to avoid biases aiming at formulating, perceiving, reflecting on and exercising probabilistic notions. The current study investigates preschoolers’ (N=90) intuitive understanding of the likelihood of events in a probabilistic task with spinners. Participants, at the age of 4 to 6, are tested on their predictions of the most probable outcome prior to and after an instructive session of reasoning. The
probabilistic task, based on constructivist principles, includes methodological alterations concerning the sample space and the themes of the stimuli. Educational implications are further discussed under the general point of view that in order to link informal to formal mathematical learning in preschool classroom, the subject
content and the cognitive capacity of children are important to match
Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis
Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al
- …
