1,080 research outputs found
Isolation and characterization of the full-length cDNA encoding a member of a novel cytochrome p450 family (CYP320A1) from the tropical freshwater snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni
Cytochrome p450s (cyp450s) are a family of structurally related proteins, with diverse functions, including steroid synthesis and breakdown of toxins. This paper reports the full-length sequence of a novel cyp450 gene, the first to be isolated from the tropical freshwater snail Biomphalaria glabrata, an important intermediate host of Schistosoma mansoni. The nucleotide sequence is 2291 bp with a predicted amino acid sequence of 584aa. The sequence demonstrates conserved cyp450 structural motifs, but is sufficiently different from previously reported cyp450 sequences to be given a new classification, CYP320A1. Initially identified as down-regulated in partially resistant snails in response to S. mansoni infection, amplification of this gene using RT-PCR in both totally resistant or susceptible snail lines when exposed to infection, and all tissues examined, suggests ubiquitous expression. Characterization of the first cyp450 from B. glabrata is significant in understanding the evolution of these metabolically important proteins
Hyb:A bioinformatics pipeline for the analysis of CLASH (crosslinking, ligation and sequencing of hybrids) data
Peer reviewedPublisher PD
Genome landscapes and bacteriophage codon usage
Across all kingdoms of biological life, protein-coding genes exhibit unequal
usage of synonmous codons. Although alternative theories abound, translational
selection has been accepted as an important mechanism that shapes the patterns
of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns
of codon usage across 74 diverse bacteriophages that infect E. coli, P.
aeruginosa and L. lactis as their primary host. We introduce the concept of a
`genome landscape,' which helps reveal non-trivial, long-range patterns in
codon usage across a genome. We develop a series of randomization tests that
allow us to interrogate the significance of one aspect of codon usage, such a
GC content, while controlling for another aspect, such as adaptation to
host-preferred codons. We find that 33 phage genomes exhibit highly non-random
patterns in their GC3-content, use of host-preferred codons, or both. We show
that the head and tail proteins of these phages exhibit significant bias
towards host-preferred codons, relative to the non-structural phage proteins.
Our results support the hypothesis of translational selection on viral genes
for host-preferred codons, over a broad range of bacteriophages.Comment: 9 Color Figures, 5 Tables, 53 Reference
Impact of shortened crop rotation of oilseed rape on soil and rhizosphere microbial diversity in relation to yield decline
Oilseed rape (OSR) grown in monoculture shows a decline in yield relative to virgin OSR of up to 25%, but the mechanisms responsible are unknown. A long term field experiment of OSR grown in a range of rotations with wheat was used to determine whether shifts in fungal and bacterial populations of the rhizosphere and bulk soil were associated with the development of OSR yield decline. The communities of fungi and bacteria in the rhizosphere and bulk soil from the field experiment were profiled using terminal restriction fragment length polymorphism (TRFLP) and sequencing of cloned internal transcribed spacer regions and 16S rRNA genes, respectively. OSR cropping frequency had no effect on rhizosphere bacterial communities. However, the rhizosphere fungal communities from continuously grown OSR were significantly different to those from other rotations. This was due primarily to an increase in abundance of two fungi which showed 100% and 95% DNA identity to the plant pathogens Olpidium brassicae and Pyrenochaeta lycopersici, respectively. Real-time PCR confirmed that there was significantly more of these fungi in the continuously grown OSR than the other rotations. These two fungi were isolated from the field and used to inoculate OSR and Brassica oleracea grown under controlled conditions in a glasshouse to determine their effect on yield. At high doses, Olpidium brassicae reduced top growth and root biomass in seedlings and reduced branching and subsequent pod and seed production. Pyrenochaeta sp. formed lesions on the roots of seedlings, and at high doses delayed flowering and had a negative impact on seed quantity and quality
Pre-pandemic mental and physical health as predictors of COVID-19 vaccine hesitancy:Evidence from a UK-wide cohort study
BACKGROUND: Although several predictors of COVID-19 vaccine hesitancy have been identified, the role of physical health and, particularly, mental health, is poorly understood. METHODS: We used individual-level data from a pandemic-focused investigation (COVID Survey), a prospective cohort study nested within the UK Understanding Society (Main Survey) project. In the week immediately following the announcement of successful testing of the first efficacious inoculation (Oxford University/AstraZeneca, November/December 2020), data on vaccine intentionality were collected in 12,035 individuals aged 16–95 years. Pre-pandemic, study members had responded to enquiries about diagnoses of mental and physical health, including the completion of the 12-item General Health Questionnaire for symptoms of psychological distress (anxiety and depression). Peri-pandemic, individuals indicated whether they or someone in their household was shielding; that is, people judged by the UK National Health Service as being particularly clinically vulnerable who were therefore requested to remain at home. Intention to take up vaccination for COVID-19 was also self-reported. RESULTS: In an analytical sample of 11,955 people (6741 women), 15.4% indicated that they were vaccine-hesitant. Relative to their disease-free counterparts, shielding was associated with a 24% lower risk of being hesitant (odds ratio; 95% confidence interval: 0.76; 0.59, 0.96), after adjustment for a range of covariates which included age, education, and ethnicity. Corresponding results for cardiometabolic disease were 22% (0.78; 0.64, 0.95), and for respiratory disease were 26% (0.74; 0.59, 0.93). Having a pre-pandemic diagnosis of anxiety or depression, or a high score on the distress symptom scale, were all unrelated to the willingness to vaccine-hesitancy. CONCLUSIONS: People with a physical condition were more likely to take up the potential offer of a COVID-19 vaccination. These effects were not apparent for indices of mental health. KEY MESSAGES: In understanding predictors of COVID-19 vaccine hesitancy, the role of physical and mental health has not been well-examined despite both groups seemingly experiencing an elevated risk of the disease. In a large UK cohort study, people with a pre-pandemic physical condition were more likely to take up the theoretical offer of vaccination. There were no apparent effects for indices of pre-pandemic mental health
Expression of Distal-less, dachshund, and optomotor blind in Neanthes arenaceodentata (Annelida, Nereididae) does not support homology of appendage-forming mechanisms across the Bilateria
The similarity in the genetic regulation of
arthropod and vertebrate appendage formation has been
interpreted as the product of a plesiomorphic gene
network that was primitively involved in bilaterian
appendage development and co-opted to build appendages
(in modern phyla) that are not historically related
as structures. Data from lophotrochozoans are needed to
clarify the pervasiveness of plesiomorphic appendage forming
mechanisms. We assayed the expression of three
arthropod and vertebrate limb gene orthologs, Distal-less
(Dll), dachshund (dac), and optomotor blind (omb), in
direct-developing juveniles of the polychaete Neanthes
arenaceodentata. Parapodial Dll expression marks premorphogenetic
notopodia and neuropodia, becoming restricted
to the bases of notopodial cirri and to ventral
portions of neuropodia. In outgrowing cephalic appendages,
Dll activity is primarily restricted to proximal
domains. Dll expression is also prominent in the brain. dac
expression occurs in the brain, nerve cord ganglia, a pair
of pharyngeal ganglia, presumed interneurons linking a
pair of segmental nerves, and in newly differentiating
mesoderm. Domains of omb expression include the brain,
nerve cord ganglia, one pair of anterior cirri, presumed
precursors of dorsal musculature, and the same pharyngeal
ganglia and presumed interneurons that express dac.
Contrary to their roles in outgrowing arthropod and
vertebrate appendages, Dll, dac, and omb lack comparable
expression in Neanthes appendages, implying independent
evolution of annelid appendage development. We infer
that parapodia and arthropodia are not structurally or
mechanistically homologous (but their primordia might
be), that Dll’s ancestral bilaterian function was in sensory
and central nervous system differentiation, and that
locomotory appendages possibly evolved from sensory
outgrowths
An investigation of causes of false positive single nucleotide polymorphisms using simulated reads from a small eukaryote genome
Background: Single Nucleotide Polymorphisms (SNPs) are widely used molecular markers, and their use has increased massively since the inception of Next Generation Sequencing (NGS) technologies, which allow detection of large numbers of SNPs at low cost. However, both NGS data and their analysis are error-prone, which can lead to the generation of false positive (FP) SNPs. We explored the relationship between FP SNPs and seven factors involved in mapping-based variant calling - quality of the reference sequence, read length, choice of mapper and variant caller, mapping stringency and filtering of SNPs by read mapping quality and read depth. This resulted in 576 possible factor level combinations. We used error- and variant-free simulated reads to ensure that every SNP found was indeed a false positive. Results: The variation in the number of FP SNPs generated ranged from 0 to 36,621 for the 120 million base pairs (Mbp) genome. All of the experimental factors tested had statistically significant effects on the number of FP SNPs generated and there was a considerable amount of interaction between the different factors. Using a fragmented reference sequence led to a dramatic increase in the number of FP SNPs generated, as did relaxed read mapping and a lack of SNP filtering. The choice of reference assembler, mapper and variant caller also significantly affected the outcome. The effect of read length was more complex and suggests a possible interaction between mapping specificity and the potential for contributing more false positives as read length increases. Conclusions: The choice of tools and parameters involved in variant calling can have a dramatic effect on the number of FP SNPs produced, with particularly poor combinations of software and/or parameter settings yielding tens of thousands in this experiment. Between-factor interactions make simple recommendations difficult for a SNP discovery pipeline but the quality of the reference sequence is clearly of paramount importance. Our findings are also a stark reminder that it can be unwise to use the relaxed mismatch settings provided as defaults by some read mappers when reads are being mapped to a relatively unfinished reference sequence from e.g. a non-model organism in its early stages of genomic exploration
Multi-tissue transcriptomes of caecilian amphibians highlight incomplete knowledge of vertebrate gene families
RNA sequencing (RNA-seq) has become one of the most powerful tools to unravel the genomic basis of biological adaptation & diversity. Although challenging, RNA-seq is particularly promising for research on non-model, secretive species that cannot be observed in nature easily and therefore remain comparatively understudied. Among such animals, the caecilians (order Gymnophiona) likely constitute the least known group of vertebrates, despite being an old and remarkably distinct lineage of amphibians. Here, we characterize multi-tissue transcriptomes for five species of caecilians that represent a broad level of diversity across the order. We identified vertebrate homologous elements of caecilian functional genes of varying tissue specificity that reveal a great number of unclassified gene families, especially for the skin. We annotated several protein domains for those unknown candidate gene families to investigate their function. We also conducted supertree analyses of a phylogenomic dataset of 1,955 candidate orthologous genes among five caecilian species and other major lineages of vertebrates, with the inferred tree being in agreement with current views of vertebrate evolution and systematics. Our study provides insights into the evolution of vertebrate protein-coding genes, and a basis for future research on the molecular elements underlying the particular biology and adaptations of caecilian amphibians
Nitrate Reduction Functional Genes and Nitrate Reduction Potentials Persist in Deeper Estuarine Sediments. Why?
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This raises interesting questions as to what the alternative metabolic roles for the various nitrate reductases could be, analogous to the alternative metabolic roles found for nitrite reductases
Pre-pandemic cognitive function and COVID-19 vaccine hesitancy: cohort study
Background
Whereas several predictors of COVID-19 vaccine hesitancy have been reported, the role of cognitive function is largely unknown. Accordingly, our objective was to evaluate the association between scores from an array of cognitive function tests and self-reported vaccine hesitancy after the announcement of the successful testing of the first COVID-19 vaccine (Oxford University/AstraZeneca).
Methods
We used individual-level data from a pandemic-focused study ('COVID Survey'), a prospective cohort study nested within United Kingdom Understanding Society ('Main Survey'). In the week immediately following the announcement of successful testing of the first efficacious inoculation (November/December 2020), data on vaccine intentionality were collected in 11,740 individuals (6702 women) aged 16–95 years. Pre-pandemic scores on general cognitive function, ascertained from a battery of six tests, were captured in 2011/12 wave of the Main Survey. Study members self-reported their intention to take up a vaccination in the COVID-19 Survey.
Results
Of the study sample, 17.2% (N = 1842) indicated they were hesitant about having the vaccine. After adjustment for age, sex, and ethnicity, study members with a lower baseline cognition score were markedly more likely to be vaccine hesitant (odds ratio per standard deviation lower score in cognition; 95% confidence interval: 1.76; 1.62, 1.90). Adjustment for mental and physical health plus household shielding status had no impact on these results, whereas controlling for educational attainment led to partial attenuation but the probability of hesitancy was still elevated (1.52; 1.37, 1.67). There was a linear association for vaccine hesitancy across the full range of cognition scores (p for trend: p < 0.0001).
Conclusions
Erroneous social media reports might have complicated personal decision-making, leading to people with lower cognitive ability being vaccine-hesitant. With individuals with lower cognition also experiencing higher rates of COVID-19 in studies conducted prior to vaccine distribution, these new findings are suggestive of a potential additional disease burden
- …
