21,734 research outputs found
Comments on gauge-invariance in cosmology
We revisit the gauge issue in cosmological perturbation theory, and highlight
its relation to the notion of covariance in general relativity. We also discuss
the similarities and differences of the covariant approach in perturbation
theory to the Bardeen or metric approach in a non-technical fashion.Comment: 7 pages, 1 figure, revtex4; v3: minor changes, typos corrected,
discussion extended; v4: typos corrected, corresponding to published versio
Jet Trimming
Initial state radiation, multiple interactions, and event pileup can
contaminate jets and degrade event reconstruction. Here we introduce a
procedure, jet trimming, designed to mitigate these sources of contamination in
jets initiated by light partons. This procedure is complimentary to existing
methods developed for boosted heavy particles. We find that jet trimming can
achieve significant improvements in event reconstruction, especially at high
energy/luminosity hadron colliders like the LHC.Comment: 20 pages, 11 figures, 3 tables - Minor changes to text/figure
Malaria: an update on treatment of adults in non-endemic countries.
Every year people die from malaria in Britain and other industrialised countries. Most of these deaths are avoidable: they occur because a patient or doctor has underestimated the severity of the disease or has not considered the diagnosis early enough. This article provides the essential facts on treating malaria in adults in a non-endemic setting and is based on the best available evidenc
Switched Linear Model Predictive Controllers for Periodic Exogenous Signals
This paper develops linear switched controllers for periodic exogenous signals using the framework of a continuous-time model predictive control. In this framework, the control signal is generated by an algorithm that uses receding horizon control principle with an on-line optimization scheme that permits inclusion of operational constraints. Unlike traditional repetitive controllers, applying this method in the form of switched linear controllers ensures rumpless transfer from one controller to another. Simulation studies are included to demonstrate the efficacy of the design with or without hard constraints
Light attenuation characteristics of glacially-fed lakes
Transparency is a fundamental characteristic of aquatic ecosystems and is highly responsive to changes in climate and land use. The transparency of glacially-fed lakes may be a particularly sensitive sentinel characteristic of these changes. However, little is known about the relative contributions of glacial flour versus other factors affecting light attenuation in these lakes. We sampled 18 glacially-fed lakes in Chile, New Zealand, and the U.S. and Canadian Rocky Mountains to characterize how dissolved absorption, algal biomass (approximated by chlorophyll a), water, and glacial flour contributed to attenuation of ultraviolet radiation (UVR) and photosynthetically active radiation (PAR, 400–700 nm). Variation in attenuation across lakes was related to turbidity, which we used as a proxy for the concentration of glacial flour. Turbidity-specific diffuse attenuation coefficients increased with decreasing wavelength and distance from glaciers. Regional differences in turbidity-specific diffuse attenuation coefficients were observed in short UVR wavelengths (305 and 320 nm) but not at longer UVR wavelengths (380 nm) or PAR. Dissolved absorption coefficients, which are closely correlated with diffuse attenuation coefficients in most non-glacially-fed lakes, represented only about one quarter of diffuse attenuation coefficients in study lakes here, whereas glacial flour contributed about two thirds across UVR and PAR. Understanding the optical characteristics of substances that regulate light attenuation in glacially-fed lakes will help elucidate the signals that these systems provide of broader environmental changes and forecast the effects of climate change on these aquatic ecosystems
Higher spin fermions in the BTZ black hole
Recently it has been shown that the wave equations of bosonic higher spin
fields in the BTZ background can be solved exactly. In this work we extend this
analysis to fermionic higher spin fields. We solve the wave equations for
arbitrary half-integer spin fields in the BTZ black hole background and obtain
exact expressions for their quasinormal modes. These quasinormal modes are
shown to agree precisely with the poles of the corresponding two point function
in the dual conformal field theory as predicted by the AdS/CFT correspondence.
We also obtain an expression for the 1-loop determinant in terms of the
quasinormal modes and show it agrees with that obtained by integrating the heat
kernel found by group theoretic methods.Comment: 29 page
Conformal Symmetry for Black Holes in Four Dimensions
We show that the asymptotic boundary conditions of general asymptotically
flat black holes in four dimensions can be modified such that a conformal
symmetry emerges. The black holes with the asymptotic geometry removed in this
manner satisfy the equations of motion of minimal supergravity in five
dimensions. We develop evidence that a two dimensional CFT dual of general
black holes in four dimensions account for their black hole entropy.Comment: 24 pages, minor correction
Effective Conformal Theory and the Flat-Space Limit of AdS
We develop the idea of an effective conformal theory describing the low-lying
spectrum of the dilatation operator in a CFT. Such an effective theory is
useful when the spectrum contains a hierarchy in the dimension of operators,
and a small parameter whose role is similar to that of 1/N in a large N gauge
theory. These criteria insure that there is a regime where the dilatation
operator is modified perturbatively. Global AdS is the natural framework for
perturbations of the dilatation operator respecting conformal invariance, much
as Minkowski space naturally describes Lorentz invariant perturbations of the
Hamiltonian. Assuming that the lowest-dimension single-trace operator is a
scalar, O, we consider the anomalous dimensions, gamma(n,l), of the
double-trace operators of the form O (del^2)^n (del)^l O. Purely from the CFT
we find that perturbative unitarity places a bound on these dimensions of
|gamma(n,l)|<4. Non-renormalizable AdS interactions lead to violations of the
bound at large values of n. We also consider the case that these interactions
are generated by integrating out a heavy scalar field in AdS. We show that the
presence of the heavy field "unitarizes" the growth in the anomalous
dimensions, and leads to a resonance-like behavior in gamma(n,l) when n is
close to the dimension of the CFT operator dual to the heavy field. Finally, we
demonstrate that bulk flat-space S-matrix elements can be extracted from the
large n behavior of the anomalous dimensions. This leads to a direct connection
between the spectrum of anomalous dimensions in d-dimensional CFTs and
flat-space S-matrix elements in d+1 dimensions. We comment on the emergence of
flat-space locality from the CFT perspective.Comment: 46 pages, 2 figures. v2: JHEP published versio
S-matrix for magnons in the D1-D5 system
We show that integrability and symmetries of the near horizon geometry of the
D1-D5 system determine the S-matrix for the scattering of magnons with
polarizations in AdS3 S3 completely up to a phase. Using
semi-classical methods we evaluate the phase to the leading and to the one-loop
approximation in the strong coupling expansion. We then show that the phase
obeys the unitarity constraint implied by the crossing relations to the
one-loop order. We also verify that the dispersion relation obeyed by these
magnons is one-loop exact at strong coupling which is consistent with their BPS
nature.Comment: 40 pages, Latex, Role of Virasoro constraints clarified, version
matches with published versio
More on recent evidence on the effects of minimum wages in the United States
A central issue in estimating the employment effects of minimum wages is the appropriate comparison group for states (or other regions) that adopt or increase the minimum wage. In recent research, Dube et al. (Rev Econ Stat 92:945-964, 2010) and Allegretto et al. (Ind Relat 50:205-240, 2011) argue that past US research is flawed because it does not restrict comparison areas to those that are geographically proximate and fails to control for changes in low-skill labor markets that are correlated with minimum wage increases. They argue that using "local controls" establishes that higher minimum wages do not reduce employment of less-skilled workers. In Neumark et al. (Ind Labor Relat Rev 67:608-648, 2014), we present evidence that their methods fail to isolate more reliable identifying information and lead to incorrect conclusions. Moreover, for subsets of treatment groups where the identifying variation they use is supported by the data, the evidence is consistent with past findings of disemployment effects. Allegretto SA, Dube A, Reich M, Zipperer B (2013a) Credible research designs for minimum wage studies. IZA Discussion Paper No. 7638, Bonn, Germany have challenged our conclusions, continuing the debate regarding some key issues regarding choosing comparison groups for estimating minimum wage effects. We explain these issues and evaluate the evidence. In general, we find little basis for their analyses and conclusions and argue that the best evidence still points to job loss from minimum wages for very low-skilled workers - in particular, for teens
- …
