93 research outputs found

    DNA helicase and helicase–nuclease enzymes with a conserved iron–sulfur cluster

    Get PDF
    Conserved Iron–Sulfur (Fe–S) clusters are found in a growing family of metalloproteins that are implicated in prokaryotic and eukaryotic DNA replication and repair. Among these are DNA helicase and helicase–nuclease enzymes that preserve chromosomal stability and are genetically linked to diseases characterized by DNA repair defects and/or a poor response to replication stress. Insight to the structural and functional importance of the conserved Fe–S domain in DNA helicases has been gleaned from structural studies of the purified proteins and characterization of Fe–S cluster site-directed mutants. In this review, we will provide a current perspective of what is known about the Fe–S cluster helicases, with an emphasis on how the conserved redox active domain may facilitate mechanistic aspects of helicase function. We will discuss testable models for how the conserved Fe–S cluster might operate in helicase and helicase–nuclease enzymes to conduct their specialized functions that help to preserve the integrity of the genome

    Functional Role of the Polymorphic 647 T/C Variant of ENT1 (SLC29A1) and Its Association with Alcohol Withdrawal Seizures

    Get PDF
    Adenosine is involved in several neurological and behavioral disorders including alcoholism. In cultured cell and animal studies, type 1 equilibrative nucleoside transporter (ENT1, slc29a1), which regulates adenosine levels, is known to regulate ethanol sensitivity and preference. Interestingly, in humans, the ENT1 (SLC29A1) gene contains a non-synonymous single nucleotide polymorphism (647 T/C; rs45573936) that might be involved in the functional change of ENT1. Our functional analysis showed that prolonged ethanol exposure increased adenosine uptake activity of mutant cells (ENT1-216Thr) compared to wild-type (ENT1-216Ile) transfected cells, which might result in reduced extracellular adenosine levels. We found that mice lacking ENT1 displayed increased propensity to ethanol withdrawal seizures compared to wild-type littermates. We further investigated a possible association of the 647C variant with alcoholism and the history of alcohol withdrawal seizures in subjects of European ancestry recruited from two independent sites. Analyses of the combined data set showed an association of the 647C variant and alcohol dependence with withdrawal seizures at the nominally significant level. Together with the functional data, our findings suggest a potential contribution of a genetic variant of ENT1 to the development of alcoholism with increased risk of alcohol withdrawal-induced seizures in humans

    Association of the OPRM1 Variant rs1799971 (A118G) with Non-Specific Liability to Substance Dependence in a Collaborative de novo Meta-Analysis of European-Ancestry Cohorts

    Get PDF
    Peer reviewe

    Pregnancy Potential of Human Oocytes -- the Effect of Cryopreservation

    No full text
    In vitro fertilization with embryo transfer rarely produces a pregnancy rate of greater than 25% per cycle. The authors designed a study to investigate two questions: does the high failure rate result from inadequate technique, or does it represent the maximum potential of retrieved eggs to produce a pregnancy?, and to what extent does freezing embryos affect their capacity to implant? The study was conducted with patients in an egg donation program in Israel. Cohorts of eggs were retrieved from donors. After fertilization, donors received fresh embryos while recipients of donated eggs were randomized to receive either fresh or frozen embryos. The pregnancy success rate was greater in recipients of fresh embryos, leading the authors to conclude that the majority of eggs in a retrieved cohort possess the potential to produce a pregnancy, but that freezing embryos significantly reduces their capacity for implantation. (KIE abstract
    corecore