22,774 research outputs found

    Spin-current noise from fluctuation relations

    Get PDF
    We present fluctuation relations that connect spin-polarized current and noise in mesoscopic conductors. In linear response, these relations are equivalent to the fluctuation-dissipation theorem that relates equilibrium current--current correlations to the linear conductance. More interestingly, in the weakly nonlinear regime of transport, these relations establish a connection between the leading-order rectification spin conductance, the spin noise susceptibility and the third cumulant of spin current fluctuations at equilibrium. Our results are valid even for systems in the presence of magnetic fields and coupled to ferromagnetic electrodes.Comment: Submitted to the Proceedings of the 31st ICP

    Dynamic thermoelectric and heat transport in mesoscopic capacitors

    Full text link
    We discuss the low-frequency response of charge and heat transport to oscillatory voltage and temperature shifts in mesoscopic capacitors. We obtain within scattering theory generic expressions for the quantum admittances up to second order in the ac frequencies in terms of electric, thermoelectric and heat capacitances and relaxation resistances. Remarkably, we find that the thermocurrent can lead or lag the applied temperature depending on the gate voltage applied to a quantum RCRC circuit. Furthermore, the relaxation resistance for cross terms becomes nonuniversal as opposed to the purely electric or thermal cases.Comment: 5 pages, 3 figures; minor changes, published versio

    A system-approach to the elastohydrodynamic lubrication point-contact problem

    Get PDF
    The classical EHL (elastohydrodynamic lubrication) point contact problem is solved using a new system-approach, similar to that introduced by Houpert and Hamrock for the line-contact problem. Introducing a body-fitted coordinate system, the troublesome free-boundary is transformed to a fixed domain. The Newton-Raphson method can then be used to determine the pressure distribution and the cavitation boundary subject to the Reynolds boundary condition. This method provides an efficient and rigorous way of solving the EHL point contact problem with the aid of a supercomputer and a promising method to deal with the transient EHL point contact problem. A typical pressure distribution and film thickness profile are presented and the minimum film thicknesses are compared with the solution of Hamrock and Dowson. The details of the cavitation boundaries for various operating parameters are discussed

    Coulomb-blockade effect in nonlinear mesoscopic capacitors

    Get PDF
    We consider an interacting quantum dot working as a coherent source of single electrons. The dot is tunnel coupled to a reservoir and capacitively coupled to a gate terminal with an applied ac potential. At low frequencies, this is the quantum analog of the RC circuit with a purely dynamical response. We investigate the quantized dynamics as a consequence of ac pulses with large amplitude. Within a Keldysh-Green function formalism we derive the time-dependent current in the Coulomb blockade regime. Our theory thus extends previous models that considered either noninteracting electrons in nonlinear response or interacting electrons in the linear regime. We prove that the electron emission and absorption resonances undergo a splitting when the charging energy is larger than the tunnel broadening. For very large charging energies, the additional peaks collapse and the original resonances are recovered, though with a reduced amplitude. Quantization of the charge emitted by the capacitor is reduced due to Coulomb repulsion and additional plateaus arise. Additionally, we discuss the differential capacitance and resistance as a function of time. We find that to leading order in driving frequency the current can be expressed as a weighted sum of noninteracting currents shifted by the charging energy.Comment: 13 pages, 9 figures. Minor changes. Published versio
    corecore