12,025 research outputs found

    Shape predicates allow unbounded verification of linearizability using canonical abstraction

    Get PDF
    Canonical abstraction is a static analysis technique that represents states as 3-valued logical structures, and is able to construct finite representations of systems with infinite statespaces for verification. The granularity of the abstraction can be altered by the definition of instrumentation predicates, which derive their meaning from other predicates. We introduce shape predicates for preserving certain structures of the state during abstraction. We show that shape predicates allow linearizability to be verified for concurrent data structures using canonical abstraction alone, and use the approach to verify a stack and two queue algorithms. This contrasts with previous efforts to verify linearizability with canonical abstraction, which have had to employ other techniques as well

    The origin of amorphous rims on lunar plagioclase grains: Solar wind damage or vapor condensates

    Get PDF
    A distinctive feature of micron sized plagioclase grains from mature lunar soils is a thin (20 to 100 nm) amorphous rim surrounding the grains. These rims were originally described from high voltage electron microscope observations of lunar plagioclase grains by Dran et al., who observed rims up to 100 nm thick on plagioclase grains from Apollo 11 and 12 soils. These rims are believed to be the product of solar wind damage. The amorphous rims were studied on micron sized plagioclase grains from a mature Apollo 16 soil using a JEOL 200FX transmission electron microscope equipped with an energy dispersive x ray spectrometer. It was found that the amorphous rims are compositionally distinct from the interior plagioclase and it is proposed that a major component of vapor condensates is present in the rims

    truth or consequences?

    Get PDF

    Momentum, Heat, and Neutral Mass Transport in Convective Atmospheric Pressure Plasma-Liquid Systems and Implications for Aqueous Targets

    Full text link
    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 μ\mum of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results from this study include the presence of a 10 K temperature drop in the gas boundary layer adjacent to the interface that arises from convective cooling and water evaporation. Accounting for the resulting difference between gas and liquid bulk temperatures has a significant impact on reaction kinetics; factor of two changes in terminal aqueous species concentrations like H2_2O2_2, NO2_2^-, and NO3_3^- are observed if the effect of evaporative cooling is not included

    Fully Coupled Simulation of the Plasma Liquid Interface and Interfacial Coefficient Effects

    Full text link
    There is a growing interest in the study of coupled plasma-liquid systems because of their applications to biomedicine, biological and chemical disinfection, agriculture, and other areas. Without an understanding of the near-surface gas dynamics, modellers are left to make assumptions about the interfacial conditions. For instance it is commonly assumed that the surface loss or sticking coefficient of gas-phase electrons at the interface is equal to 1. In this work we explore the consequences of this assumption and introduce a couple of ways to think about the electron interfacial condition. In one set of simulations we impose a kinetic condition with varying surface loss coefficient on the gas phase interfacial electrons. In a second set of simulations we introduce a Henry's law like condition at the interface in which the gas-phase electron concentration is assumed to be in thermodynamic equilibrium with the liquid-phase electron concentration. It is shown that for a range of electron Henry coefficients spanning a range of known hydrophilic specie Henry coefficients, the gas phase electron density in the anode can vary by orders of magnitude. Varying reflection of electrons by the interface also has consequences for the electron energy profile. This variation in anode electron density and energy as a function of the interface characteristics could also lead to significant variation in near-surface gas chemistries when such reactions are included in the model; this could very well in turn affect the reactive species impinging on the liquid surface. We draw the conclusion that in order to make more confident model predictions about plasma-liquid systems, finer scale simulations and/or new experimental techniques must be used to elucidate the near-surface gas phase electron dynamics

    Impact glasses from the less than 20-micrometer fraction of Apollo 17 soils 72501 and 78221

    Get PDF
    The chemical compositions of microscopic glasses produced during meteoroid impacts on the lunar surface provide information regarding the various fractionation processes that accompany these events. To learn more about these fractionation processes, we studied the compositions of submicrometer glass spheres from two Apollo 17 sampling sites using electron microscopy. The majority of the analyzed glasses show evidence for varying degrees of impact-induced chemical fractionation. Among these are HASP glasses (high-Al, Si-poor), which are believed to represent the refractory residuum left after the loss of volatile elements (e.g., Si, Fe, Na) from the precursor material. In addition to HASP-type glasses, we also observed a group of volatile-rich, Al-poor (VRAP) glasses that represent condensates of vaporized volatile constituents, and are complementary to the HASP compositions. High-Ti glasses were also found during the course of this study, and are documented here for the first time
    corecore