240 research outputs found
Impact of groin flap ischemia-reperfusion on red blood cell micro-rheological parameters in a follow-up study on rats
K
Hydrostatic pressure does not cause detectable changes to survival of human retinal ganglion
Purpose: Elevated intraocular pressure (IOP) is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP). The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC) survival in the human retina was investigated. Methods: A chamber was designed to expose cells to increased HP (constant and fluctuating). Accurate pressure control (10-100mmHg) was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs) from donor eyes (<24h post mortem) were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD). Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1) and RGC number by immunohistochemistry (NeuN). Activated p38 and JNK were detected by Western blot. Results: Exposure of HORCs to constant (60mmHg) or fluctuating (10-100mmHg; 1 cycle/min) pressure for 24 or 48h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1) or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100mmHg; 1 cycle/min) for 15, 30, 60 and 90min durations, whereas OGD (3h) increased activation of p38 and JNK, remaining elevated for 90min post-OGD. Conclusions: Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina
Morphological Alternations at the Intonational Phrase Edge
This article develops an analysis of a pair of morphological alternations in K\u27ichee\u27 (Mayan) that are conditioned at the right edge of intonational phrase boundaries. I propose a syntax-prosody mapping algorithm that derives intonational phrase boundaries from the surface syntax, and then argue that each alternation can be understood in terms of output optimization. The important fact is that a prominence peak is always rightmost in the intonational phrase, and so the morphological alternations occur in order to ensure an optimal host for this prominence peak. Finally, I consider the wider implications of the analysis for the architecture of the syntax-phonology interface, especially as it concerns late-insertion theories of morphology
Reduced-scaling correlation methods for the excited states of large molecules: implementation and benchmarks for the second-order algebraic-diagrammatic construction approach
A framework for the reduced-scaling implementation of excited-state correlation methods is presented. An algorithm is introduced to construct excitation-specific local domains, which include all the important molecular orbitals for the excitation as well as for the electron correlation. The orbital space dimensions of the resulting compact domains are further decreased utilizing our reduced-cost techniques developed previously [J. Chem. Phys. 148, 094111 (2018)] based on the natural auxiliary function and local natural orbital approaches. Additional methodological improvements for the evaluation of density matrices are also discussed. Benchmark calculations are presented at the second-order algebraic-diagrammatic construction level. Compared to our reduced-cost algorithm significant, up to 3-9-fold speedups are achieved even for systems of smaller than 100 atoms. At the same time the additional errors introduced by the domain approximations are highly acceptable being about 2-4 meV on the average. The presented reduced-scaling algorithm allows us to carry out correlated excited-state calculations using triple-zeta basis sets with diffuse functions for systems of up to 400 atoms or 13000 atomic orbitals in a matter of days using an 8-core processor
LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes
<p>Abstract</p> <p>Background</p> <p>Physical maps are the substrate of genome sequencing and map-based cloning and their construction relies on the accurate assembly of BAC clones into large contigs that are then anchored to genetic maps with molecular markers. High Information Content Fingerprinting has become the method of choice for large and repetitive genomes such as those of maize, barley, and wheat. However, the high level of repeated DNA present in these genomes requires the application of very stringent criteria to ensure a reliable assembly with the FingerPrinted Contig (FPC) software, which often results in short contig lengths (of 3-5 clones before merging) as well as an unreliable assembly in some difficult regions. Difficulties can originate from a non-linear topological structure of clone overlaps, low power of clone ordering algorithms, and the absence of tools to identify sources of gaps in Minimal Tiling Paths (MTPs).</p> <p>Results</p> <p>To address these problems, we propose a novel approach that: (i) reduces the rate of false connections and Q-clones by using a new cutoff calculation method; (ii) obtains reliable clusters robust to the exclusion of single clone or clone overlap; (iii) explores the topological contig structure by considering contigs as networks of clones connected by significant overlaps; (iv) performs iterative clone clustering combined with ordering and order verification using re-sampling methods; and (v) uses global optimization methods for clone ordering and Band Map construction. The elements of this new analytical framework called Linear Topological Contig (LTC) were applied on datasets used previously for the construction of the physical map of wheat chromosome 3B with FPC. The performance of LTC vs. FPC was compared also on the simulated BAC libraries based on the known genome sequences for chromosome 1 of rice and chromosome 1 of maize.</p> <p>Conclusions</p> <p>The results show that compared to other methods, LTC enables the construction of highly reliable and longer contigs (5-12 clones before merging), the detection of "weak" connections in contigs and their "repair", and the elongation of contigs obtained by other assembly methods.</p
Causal Effects on Complex Traits Are Similar for Common Variants Across Segments of Different Continental Ancestries Within Admixed Individuals
Individuals of admixed ancestries (for example, African Americans) inherit a mosaic of ancestry segments (local ancestry) originating from multiple continental ancestral populations. This offers the unique opportunity of investigating the similarity of genetic effects on traits across ancestries within the same population. Here we introduce an approach to estimate correlation of causal genetic effects (radmix) across local ancestries and analyze 38 complex traits in African-European admixed individuals (N = 53,001) to observe very high correlations (meta-analysis radmix = 0.95, 95% credible interval 0.93-0.97), much higher than correlation of causal effects across continental ancestries. We replicate our results using regression-based methods from marginal genome-wide association study summary statistics. We also report realistic scenarios where regression-based methods yield inflated heterogeneity-by-ancestry due to ancestry-specific tagging of causal effects, and/or polygenicity. Our results motivate genetic analyses that assume minimal heterogeneity in causal effects by ancestry, with implications for the inclusion of ancestry-diverse individuals in studies
Recommended from our members
Gene-Specific Effects on Brain Volume and Cognition of TMEM106B in Frontotemporal Lobar Degeneration.
BACKGROUND AND OBJECTIVES: TMEM106B has been proposed as a modifier of disease risk in FTLD-TDP, particularly in GRN pathogenic variant carriers. Furthermore, TMEM106B has been investigated as a disease modifier in the context of healthy aging and across multiple neurodegenerative diseases. The objective of this study was to evaluate and compare the effect of TMEM106B on gray matter volume and cognition in each of the common genetic FTD groups and in patients with sporadic FTD. METHODS: Participants were enrolled through the ARTFL/LEFFTDS Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) study, which includes symptomatic and presymptomatic individuals with a pathogenic variant in C9orf72, GRN, MAPT, VCP, TBK1, TARDBP, symptomatic nonpathogenic variant carriers, and noncarrier family controls. All participants were genotyped for the TMEM106B rs1990622 SNP. Cross-sectionally, linear mixed-effects models were fitted to assess an association between TMEM106B and genetic group interaction with each outcome measure (gray matter volume and UDS3-EF for cognition), adjusting for education, age, sex, and CDR+NACC-FTLD sum of boxes. Subsequently, associations between TMEM106B and each outcome measure were investigated within the genetic group. For longitudinal modeling, linear mixed-effects models with time by TMEM106B predictor interactions were fitted. RESULTS: The minor allele of TMEM106B rs1990622, linked to a decreased risk of FTD, associated with greater gray matter volume in GRN pathogenic variant carriers under the recessive dosage model (N = 82, beta = 3.25, 95% CI [0.37-6.19], p = 0.034). This was most pronounced in the thalamus in the left hemisphere (beta = 0.03, 95% CI [0.01-0.06], p = 0.006), with a retained association when considering presymptomatic GRN pathogenic variant carriers only (N = 42, beta = 0.03, 95% CI [0.01-0.05], p = 0.003). The minor allele of TMEM106B rs1990622 also associated with greater cognitive scores among all C9orf72 pathogenic variant carriers (N = 229, beta = 0.36, 95% CI [0.05-0.066], p = 0.021) and in presymptomatic C9orf72 pathogenic variant carriers (N = 106, beta = 0.33, 95% CI [0.03-0.63], p = 0.036), under the recessive dosage model. DISCUSSION: We identified associations of TMEM106B with gray matter volume and cognition in the presence of GRN and C9orf72 pathogenic variants. The association of TMEM106B with outcomes of interest in presymptomatic GRN and C9orf72 pathogenic variant carriers could additionally reflect TMEM106Bs effect on divergent pathophysiologic changes before the appearance of clinical symptoms
Why Do Borrowers Pledge Collateral? New Empirical Evidence on the Role of Asymmetric Information
An important theoretical literature motivates collateral as a mechanism that mitigates adverse selection, credit rationing, and other inefficiencies that arise when borrowers hold ex ante private information. There is no clear empirical evidence regarding the central implication of this literature - that a reduction in asymmetric information reduces the incidence of collateral. We exploit exogenous variation in lender information related to the adoption of an information technology that reduces ex ante private information, and compare collateral outcomes before and after adoption. Our results are consistent with this central implication of the private-information models and support the empirical importance of this theory
The Capital Structure and Governance of a Mortgage Securitization Utility
We explore the capital structure and governance of a mortgage-insuring securitization utility operating with government reinsurance for systemic or 'tail' risk. The structure we propose for the replacement of the GSEs focuses on aligning incentives for appropriate pricing and transfer of mortgage risks across the private sector and between the private sector and the government. We present the justification and mechanics of a vintage-based capital structure, and assess the components of the mortgage guarantee fee, whose size we find is most sensitive to the required capital ratio and the expected return on that capital. We discuss the implications of selling off some of the utility's mortgage credit risk to the capital markets and how the informational value of such transactions may vary with the level of risk transfer. Finally, we explore how mutualization could address incentive misalignments arising out of securitization and government insurance, as well as how the governance structure for such a financial market utility could be designed
- …
