5,432 research outputs found
Do Individual Investors Drive Post-Earnings Announcement Drift? Direct Evidence from Personal Trades
This study examines whether individual investors are the source of post- earnings announcement drift (PEAD). We provide evidence on how individual investors trade in response to extreme quarterly earnings surprises and on the relation between individual investors' trades and subsequent abnormal returns. We find no evidence that either individuals or any sub-category of individuals in our sample cause PEAD. Individuals are significant net buyers after both negative and positive earnings surprises. There is no indication that trading by any of our investor sub-categories explains the concentration of drift at subsequent earnings announcement dates. While post-announcement individual net buying is a significant negative predictor of stock returns over the next three quarters, individual investor trading fails to subsume any of the power of extreme earnings surprises to predict future abnormal returns.post earnings-announcement drift, trading activity, individual investors, market efficiency
dRail: a novel physical layout methodology for power gated circuits
In this paper we present a physical layout methodology, called dRail, to allow power gated and non-power gated cells to be placed next to each other. This is unlike traditional voltage area layout which separates cells to prevent shorting of power supplies leading to impact on area, routing and power. To implement dRail, a modified standard cell architecture and physical layout is proposed. The methodology is validated by implementing power gating on the data engine in an ARM Cortex-A5 processor using a 65nm library, and shows up to 38% reduction in area cost when compared to traditional voltage area layou
Adding Charges to N=4 Dyons
The spectrum of dyons in a class of N=4 supersymmetric string theories has
been found for a specific set of electric and magnetic charge vectors. We
extend the analysis to more general charge vectors by considering various
charge carrying collective excitations of the original system.Comment: LaTeX file, 16 page
Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel Part 4: Six-ply Out-of-Autoclave Facesheets
Four honeycomb sandwich panel types, representing 1/16th arc segments of a 10-m diameter barrel section of the Heavy Lift Launch Vehicle (HLLV), were manufactured and tested under the NASA Composites for Exploration program and the NASA Constellation Ares V program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: in-autoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3 ft. by 5 ft. panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center (LaRC). Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of each 3 ft. by 5 ft. panel. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panels composed of 6-ply, T40-800b/5320-1 facesheets (referred to as Panels D). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yield good qualitative and quantitative predictions. Additionally, it was correctly predicted that the panel would fail in buckling prior to failing in strength. Furthermore, three-dimensional (3D) effects on the compressive response of the panel were studied
The potential impact of Ocean Thermal Energy Conversion (OTEC) on fisheries
The commercial development of ocean thermal energy conversion (OTEC) operations will involve some environmental perturbations for which there is no
precedent experience. The pumping of very large volumes of warm surface water and cold deep water and its subsequent discharge will result in the impingement, entrainment, and redistribution of biota. Additional stresses to biota will be caused by biocide usage and temperature depressions. However, the artificial upwelling of nutrients associated with the pumping of cold deep water, and the artificial
reef created by an OTEC plant may have positive effects on the local environment.
Although more detailed information is needed to assess the net effect of an OTEC operation on fisheries, certain assumptions and calculations are made supporting the conclusion that the potential risk to fisheries is not significant enough to deter the early development of IDEe. It will be necessary to monitor a commercial-scale plant in order to remove many of the remaining uncertainties. (PDF file contains 39 pages.
Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors
MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate
Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel
Four honeycomb sandwich panels, representing 1/16th arc segments of a 10 m diameter barrel section of the heavy lift launch vehicle, were manufactured under the NASA Composites for Exploration program and the NASA Constellation Ares V program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: inautoclave IM7/977-3 and out-of-autoclave T40-800B/5320-1. Smaller 3- by 5-ft panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center. Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of the 3- by 5-ft panels. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panel composed of 8-ply, T40-800B/5320-1 facesheets (referred to as Panel C). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear, two-dimensional (2-D) and three-dimensional (3-D), models yield good qualitative and quantitative predictions. Additionally, it was predicted correctly that the panel would fail in buckling prior to failing in strength
Towards a holographic dual of large-N_c QCD
We study N_f D6-brane probes in the supergravity background dual to N_c
D4-branes compactified on a circle with supersymmetry-breaking boundary
conditions. In the limit in which the resulting Kaluza--Klein modes decouple,
the gauge theory reduces to non-supersymmetric, four-dimensional QCD with N_c
colours and N_f << N_c flavours. As expected, this decoupling is not fully
realised within the supergravity/Born--Infeld approximation. For N_f = 1 and
massless quarks, m_q = 0, we exhibit spontaneous chiral symmetry breaking by a
quark condensate, \neq 0, and find the associated massless
`pion' in the spectrum. The latter becomes massive for m_q > 0, obeying the
Gell-Mann--Oakes--Renner relation: M_pi^2= - m_q / \f_pi^2. In
the case N_f > 1 we provide a holographic version of the Vafa--Witten theorem,
which states that the U(N_f) flavour symmetry cannot be spontaneously broken.
Further we find N_f^2 - 1 unexpectedly light pseudo-scalar mesons in the
spectrum. We argue that these are not (pseudo) Goldstone bosons and speculate
on the string mechanism responsible for their lightness. We then study the
theory at finite temperature and exhibit a phase transition associated with a
discontinuity in the chiral condensate. D6/anti-D6 pairs are also briefly
discussed.Comment: 43 pages, LaTeX; v3: Scalar vs. pseudo-scalar nature of mesons
clarified, references added. v4: Small change in Acknowledgment
Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel Part 1: 8-Ply In-Autoclave Facesheets
Four honeycomb sandwich panels, representing 1/16th arc segments of a 10-m diameter barrel section of the heavy lift launch vehicle, were manufactured under the NASA Composites for Exploration program and the NASA Space Launch Systems program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: inautoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3.00- by 5.00-ft panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center. Furthermore, linear eigenvalue and geometrically nonlinear finite element analysis was performed to predict the compressive response of the 3.00- by 5.00-ft panels. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panel composed of 8-ply, IM7/977-3 facesheets (referred to Panel A). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yield good qualitative and quantitative predictions. Additionally, it was predicted correctly that the panel would fail in buckling prior to failing in strength. Furthermore, several imperfection studies were performed to investigate the influence of geometric imperfections, fiber misalignments, and three-dimensional (3 D) effects on the compressive response of the panel
- …
