1,017 research outputs found
Targeted anion transporter delivery by coiled-coil driven membrane fusion
Synthetic anion transporters (anionophores) have potential as biomedical research tools and therapeutics. However, the efficient and specific delivery of these highly lipophilic molecules to a target cell membrane is non-trivial. Here, we investigate the delivery of a powerful anionophore to artificial and cell membranes using a coiled-coil-based delivery system inspired by SNARE membrane fusion proteins. Incorporation of complementary lipopeptides into the lipid membranes of liposomes and cell-sized giant unilamellar vesicles (GUVs) facilitated the delivery of a powerful anionophore into GUVs, where its anion transport activity was monitored in real time by fluorescence microscopy. Similar results were achieved using live cells engineered to express a halide-sensitive fluorophore. We conclude that coiled-coil driven membrane fusion is a highly efficient system to deliver anionophores to target cell membranes.info:eu-repo/semantics/publishe
Pathwise Sensitivity Analysis in Transient Regimes
The instantaneous relative entropy (IRE) and the corresponding instanta-
neous Fisher information matrix (IFIM) for transient stochastic processes are
pre- sented in this paper. These novel tools for sensitivity analysis of
stochastic models serve as an extension of the well known relative entropy rate
(RER) and the corre- sponding Fisher information matrix (FIM) that apply to
stationary processes. Three cases are studied here, discrete-time Markov
chains, continuous-time Markov chains and stochastic differential equations. A
biological reaction network is presented as a demonstration numerical example
Options for early breast cancer follow-up in primary and secondary care : a systematic review
Background
Both incidence of breast cancer and survival have increased in recent years and there is a need to review follow up strategies. This study aims to assess the evidence for benefits of follow-up in different settings for women who have had treatment for early breast cancer.
Method
A systematic review to identify key criteria for follow up and then address research questions. Key criteria were: 1) Risk of second breast cancer over time - incidence compared to general population. 2) Incidence and method of detection of local recurrence and second ipsi and contra-lateral breast cancer. 3) Level 1–4 evidence of the benefits of hospital or alternative setting follow-up for survival and well-being. Data sources to identify criteria were MEDLINE, EMBASE, AMED, CINAHL, PSYCHINFO, ZETOC, Health Management Information Consortium, Science Direct. For the systematic review to address research questions searches were performed using MEDLINE (2011). Studies included were population studies using cancer registry data for incidence of new cancers, cohort studies with long term follow up for recurrence and detection of new primaries and RCTs not restricted to special populations for trials of alternative follow up and lifestyle interventions.
Results
Women who have had breast cancer have an increased risk of a second primary breast cancer for at least 20 years compared to the general population. Mammographically detected local recurrences or those detected by women themselves gave better survival than those detected by clinical examination. Follow up in alternative settings to the specialist clinic is acceptable to women but trials are underpowered for survival.
Conclusions
Long term support, surveillance mammography and fast access to medical treatment at point of need may be better than hospital based surveillance limited to five years but further large, randomised controlled trials are needed
From CFTR biology toward combinatorial pharmacotherapy:expanded classification of cystic fibrosis mutations
More than 2000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) have been described that confer a range of molecular cell biological and functional phenotypes. Most of these mutations lead to compromised anion conductance at the apical plasma membrane of secretory epithelia and cause cystic fibrosis (CF) with variable disease severity. Based on the molecular phenotypic complexity of CFTR mutants and their susceptibility to pharmacotherapy, it has been recognized that mutations may impose combinatorial defects in CFTR channel biology. This notion led to the conclusion that the combination of pharmacotherapies addressing single defects (e.g., transcription, translation, folding, and/or gating) may show improved clinical benefit over available low-efficacy monotherapies. Indeed, recent phase 3 clinical trials combining ivacaftor (a gating potentiator) and lumacaftor (a folding corrector) have proven efficacious in CF patients harboring the most common mutation (deletion of residue F508, ΔF508, or Phe508del). This drug combination was recently approved by the U.S. Food and Drug Administration for patients homozygous for ΔF508. Emerging studies of the structural, cell biological, and functional defects caused by rare mutations provide a new framework that reveals a mixture of deficiencies in different CFTR alleles. Establishment of a set of combinatorial categories of the previously defined basic defects in CF alleles will aid the design of even more efficacious therapeutic interventions for CF patients
CFTR modulators: from mechanism to targeted therapeutics
People with cystic fibrosis (CF) suffer from a multi-organ disorder caused by loss-of-function variants in the gene encoding the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR). Tremendous progress has been made in both basic and clinical sciences over the past three decades since the identification of the CFTR gene. Over 90% of people with CF now have access to therapies targeting dysfunctional CFTR. This success was made possible by numerous studies in the field that incrementally paved the way for the development of small molecules known as CFTR modulators. The advent of CFTR modulators transformed this life-threatening illness into a treatable disease by directly binding to the CFTR protein and correcting defects induced by pathogenic variants. In this chapter, we trace the trajectory of structural and functional studies that brought CF therapies from bench to bedside, with an emphasis on mechanistic understanding of CFTR modulators
Can two wrongs make a right?:F508del-CFTR ion channel rescue by second-site mutations in its transmembrane domains
Deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is the most common cause of cystic fibrosis. The F508 residue is located on nucleotide-binding domain 1 (NBD1) in contact with the cytosolic extensions of the transmembrane helices, in particular intracellular loop 4 (ICL4). To investigate how absence of F508 at this interface impacts the CFTR protein, we carried out a mutagenesis scan of ICL4 by introducing second-site mutations at 11 positions in cis with F508del. Using an image-based fluorescence assay, we measured how each mutation affected membrane proximity and ion-channel function. The scan strongly validated the effectiveness of R1070W at rescuing F508del defects. Molecular dynamics simulations highlighted two features characterizing the ICL4/NBD1 interface of F508del/R1070W-CFTR: flexibility, with frequent transient formation of interdomain hydrogen bonds, and loosely stacked aromatic sidechains (F1068, R1070W, and F1074, mimicking F1068, F508, and F1074 in WT CFTR). F508del-CFTR displayed a distorted aromatic stack, with F1068 displaced toward the space vacated by F508, while in F508del/R1070F-CFTR, which largely retained F508del defects, R1070F could not form hydrogen bonds and the interface was less flexible. Other ICL4 second-site mutations which partially rescued F508del-CFTR included F1068M and F1074M. Methionine side chains allow hydrophobic interactions without the steric rigidity of aromatic rings, possibly conferring flexibility to accommodate the absence of F508 and retain a dynamic interface. These studies highlight how both hydrophobic interactions and conformational flexibility might be important at the ICL4/NBD1 interface, suggesting possible structural underpinnings of F508del-induced dysfunction
Calibration of myocardial T2 and T1 against iron concentration.
BACKGROUND: The assessment of myocardial iron using T2* cardiovascular magnetic resonance (CMR) has been validated and calibrated, and is in clinical use. However, there is very limited data assessing the relaxation parameters T1 and T2 for measurement of human myocardial iron.
METHODS: Twelve hearts were examined from transfusion-dependent patients: 11 with end-stage heart failure, either following death (n=7) or cardiac transplantation (n=4), and 1 heart from a patient who died from a stroke with no cardiac iron loading. Ex-vivo R1 and R2 measurements (R1=1/T1 and R2=1/T2) at 1.5 Tesla were compared with myocardial iron concentration measured using inductively coupled plasma atomic emission spectroscopy.
RESULTS: From a single myocardial slice in formalin which was repeatedly examined, a modest decrease in T2 was observed with time, from mean (± SD) 23.7 ± 0.93 ms at baseline (13 days after death and formalin fixation) to 18.5 ± 1.41 ms at day 566 (p<0.001). Raw T2 values were therefore adjusted to correct for this fall over time. Myocardial R2 was correlated with iron concentration [Fe] (R2 0.566, p<0.001), but the correlation was stronger between LnR2 and Ln[Fe] (R2 0.790, p<0.001). The relation was [Fe] = 5081•(T2)-2.22 between T2 (ms) and myocardial iron (mg/g dry weight). Analysis of T1 proved challenging with a dichotomous distribution of T1, with very short T1 (mean 72.3 ± 25.8 ms) that was independent of iron concentration in all hearts stored in formalin for greater than 12 months. In the remaining hearts stored for <10 weeks prior to scanning, LnR1 and iron concentration were correlated but with marked scatter (R2 0.517, p<0.001). A linear relationship was present between T1 and T2 in the hearts stored for a short period (R2 0.657, p<0.001).
CONCLUSION: Myocardial T2 correlates well with myocardial iron concentration, which raises the possibility that T2 may provide additive information to T2* for patients with myocardial siderosis. However, ex-vivo T1 measurements are less reliable due to the severe chemical effects of formalin on T1 shortening, and therefore T1 calibration may only be practical from in-vivo human studies
CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression.
Pulmonary delivery of plasmid DNA (pDNA)/cationic liposome complexes is associated with an acute unmethylated CG dinucleotide (CpG)-mediated inflammatory response and brief duration of transgene expression. We demonstrate that retention of even a single CpG in pDNA is sufficient to elicit an inflammatory response, whereas CpG-free pDNA vectors do not. Using a CpG-free pDNA expression vector, we achieved sustained (≥56 d) in vivo transgene expression in the absence of lung inflammation
- …
