138 research outputs found

    Forty years on: clathrin-coated pits continue to fascinate

    Get PDF
    Clathrin mediated endocytosis (CME) is a fundamental process in cell biology and has been extensively investigated throughout the last several decades. Every cell biologist learns about it at some point during their education and the beauty of this process has led many of us to go deeper and make it the topic of our own research. Great progress has been made towards elucidating the mechanisms of CME and the field is becoming increasingly complex with several hundred new publications every year. This makes it easy to get lost in the vast amount of literature and to forget about the fundamentals of the field, based on the careful interpretation of simple observations made over 40 years ago. A study performed by Anderson, Brown and Goldstein in 1977 (Anderson et al., 1977) is a prime example of this. We therefore want to take a step back and examine how this seminal study was pivotal to our understanding of CME and its progression into ever increasing complexity over the last four decades

    Live cell tracking of macrophage efferocytosis during Drosophila embryo development in vivo

    Get PDF
    Apoptosis of cells and their subsequent removal via efferocytosis occurs in nearly all tissues during development, homeostasis, and disease. However, it has been difficult to track cell death and subsequent corpse removal in vivo. Here, we developed a genetically encoded fluorescent reporter, CharON, that could track emerging apoptotic cells and their efferocytic clearance by phagocytes. Using Drosophila expressing CharON, we uncovered multiple qualitative and quantitative features of coordinated clearance of apoptotic corpses during embryonic development. To confront high rate of emerging apoptotic corpses, the macrophages displayed heterogeneity in engulfment, with some efferocytic macrophages carrying high corpse burden. However, overburdened macrophages were compromised in clearing wound debris, revealing an inherent vulnerability. These findings reveal known and unexpected features of apoptosis and macrophage efferocytosis in vivo

    Repression of PLA2R1 by c-MYC and HIF-2alpha promotes cancer growth

    Get PDF
    Loss of secreted phospholipase A2 receptor (PLA2R1) has recently been found to render human primary cells more resistant to senescence whereas increased PLA2R1 expression is able to induce cell cycle arrest, cancer cell death or blockage of cancer cell transformation in vitro, suggesting that PLA2R1 displays tumor suppressive activities. Here we report that PLA2R1 expression strongly decreases in samples of human renal cell carcinoma (RCC). Knockdown of PLA2R1 increases renal cancer cell tumorigenicity supporting a role of PLA2R1 loss to promote in vivo RCC growth. Most RCC result from Von Hippel-Lindau (VHL) tumor suppressor loss-of-function and subsequent gain-of-function of the oncogenic HIF-2alpha/c-MYC pathway. Here, by genetically manipulating VHL, HIF-2alpha and c-MYC, we demonstrate that loss of VHL, stabilization of HIF-2alpha and subsequent increased c-MYC activity, binding and transcriptional repression, through induction of PLA2R1 DNA methylation closed to PLA2R1 transcriptional start site, results in decreased PLA2R1 transcription. Our results describe for the first time an oncogenic pathway leading to PLA2R1 transcriptional repression and the importance of this repression for tumor growth

    Alix is required for activity-dependent bulk endocytosis at brain synapses

    Get PDF
    In chemical synapses undergoing high frequency stimulation, vesicle components can be retrieved from the plasma membrane via a clathrin-independent process called activitydependent bulk endocytosis (ADBE). Alix (ALG-2-interacting protein X/PDCD6IP) is an adaptor protein binding to ESCRT and endophilin-A proteins which is required for clathrinindependent endocytosis in fibroblasts. Alix is expressed in neurons and concentrates at synapses during epileptic seizures. Here, we used cultured neurons to show that Alix is recruited to presynapses where it interacts with and concentrates endophilin-A during conditions triggering ADBE. Using Alix knockout (ko) neurons, we showed that this recruitment, which requires interaction with the calcium-binding protein ALG-2, is necessary for ADBE. We also found that presynaptic compartments of Alix ko hippocampi display subtle morphological defects compatible with flawed synaptic activity and plasticity detected electrophysiologically. Furthermore, mice lacking Alix in the forebrain undergo less seizures during kainate-induced status epilepticus and reduced propagation of the epileptiform activity. These results thus show that impairment of ADBE due to the lack of neuronal Alix leads to abnormal synaptic recovery during physiological or pathological repeated stimulations

    Membrane curvature association of amphipathic helix 8 drives constitutive endocytosis of GPCRs

    Get PDF
    Cellular signaling relies on the activity of transmembrane receptors and their presentation on the cellular surface. Their continuous insertion in the plasma membrane is balanced by constitutive and activity-dependent internalization, which is orchestrated by adaptor proteins recognizing semispecific motifs within the receptors' intracellular regions. Here, we describe a complementary trafficking mechanism for G protein-coupled receptors (GPCRs) that is evolutionary conserved and refined. This mechanism relies on the insertion of their amphipathic helix 8 into the inner leaflet of lipid membranes, orthogonal to the transmembrane helices. These amphipathic helices dictate subcellular localization of the receptors and autonomously drive their endocytosis by cooperative assembly and association with areas of high membrane curvature. The strength of helix 8 membrane insertion propensity quantitatively predicts the rate of constitutive internalization of GPCRs. This discovery advances our understanding of membrane protein trafficking and highlights a principle of receptor-lipid interactions that may have broad implications for cellular signaling and therapeutic targeting.</p

    Understanding the nervous system: Lessons from Frontiers in Neurophotonics

    Get PDF
    The Frontiers in Neurophotonics Symposium is a biennial event that brings together neurobiologists and physicists/engineers who share interest in the development of leading-edge photonics-based approaches to understand and manipulate the nervous system, from its individual molecular components to complex networks in the intact brain. In this Community paper, we highlight several topics that have been featured at the symposium that took place in October 2022 in Québec City, Canada

    Istradefylline protects from cisplatin-induced nephrotoxicity and peripheral neuropathy while preserving cisplatin antitumor effects

    Get PDF
    Cisplatin is a potent chemotherapeutic drug that is widely used in the treatment of various solid cancers. However, its clinical effectiveness is strongly limited by frequent severe adverse effects, in particular nephrotoxicity and chemotherapy-induced peripheral neuropathy. Thus, there is an urgent medical need to identify novel strategies that limit cisplatin-induced toxicity. In the present study, we show that the FDA-approved adenosine A2A receptor antagonist istradefylline (KW6002) protected from cisplatin-induced nephrotoxicity and neuropathic pain in mice with or without tumors. Moreover, we also demonstrate that the antitumoral properties of cisplatin were not altered by istradefylline in tumor-bearing mice and could even be potentiated. Altogether, our results support the use of istradefylline as a valuable preventive approach for the clinical management of patients undergoing cisplatin treatment
    corecore