15,641 research outputs found
New evidence on the Fed's productivity in providing payments services
As the dominant provider of payments services, the efficiency with which the Federal Reserve provides such services in an important public policy issue. This paper examines the productivity of Federal Reserve check-processing offices during 1980-1999 using non-parametric estimation methods and newly developed methods for non-parametric inference and hypothesis testing. The results support prior studies that found little initial improvement in the Fed's efficiency with the imposition of pricing for Federal Reserve services in 1982. However, we find that median productivity improved substantially during the 1990s, and the dispersion across Fed offices declined.>Productivity ; Payment systems ; Check collection systems
Persistence effects in deterministic diffusion
In systems which exhibit deterministic diffusion, the gross parameter
dependence of the diffusion coefficient can often be understood in terms of
random walk models. Provided the decay of correlations is fast enough, one can
ignore memory effects and approximate the diffusion coefficient according to
dimensional arguments. By successively including the effects of one and two
steps of memory on this approximation, we examine the effects of
``persistence'' on the diffusion coefficients of extended two-dimensional
billiard tables and show how to properly account for these effects, using walks
in which a particle undergoes jumps in different directions with probabilities
that depend on where they came from.Comment: 7 pages, 7 figure
Kinematics and Metallicity of M31 Red Giants: The Giant Southern Stream and Discovery of a Second Cold Component at R = 20 kpc
We present spectroscopic observations of red giant branch (RGB) stars in the
Andromeda spiral galaxy (M31), acquired with the DEIMOS instrument on the Keck
II 10-m telescope. The three fields targeted in this study are in the M31
spheroid, outer disk, and giant southern stream. In this paper, we focus on the
kinematics and chemical composition of RGB stars in the stream field located at
a projected distance of R = 20 kpc from M31's center. A mix of stellar
populations is found in this field. M31 RGB stars are isolated from Milky Way
dwarf star contaminants using a variety of spectral and photometric
diagnostics. The radial velocity distribution of RGB stars displays a clear
bimodality -- a primary peak centered at v = -513 km/s and a secondary one at v
= -417 km/s -- along with an underlying broad component that is presumably
representative of the smooth spheroid of M31. Both peaks are found to be
dynamically cold with intrinsic velocity dispersions of sigma(v) = 16 km/s. The
mean metallicity and metallicity dispersion of stars in the two peaks is also
found to be similar: [Fe/H] = -0.45 and sigma([Fe/H]) = 0.2. The observed
velocity of the primary peak is consistent with that predicted by dynamical
models for the stream, but there is no obvious explanation for the secondary
peak. The nature of the secondary cold population is unclear: it may represent:
(1) tidal debris from a satellite merger event that is superimposed on, but
unrelated to, the giant southern stream; (2) a wrapped around component of the
giant southern stream; (3) a warp or overdensity in M31's disk at R > 50 kpc
(this component is well above the outward extrapolation of the smooth
exponential disk brightness profile).Comment: 32 pages, 13 figures, 1 table. Accepted for publication in Ap
Fast Sorting on a Distributed-Memory Architecture
We consider the often-studied problem of sorting, for a parallel computer. Given an input array distributed evenly over p processors, the task is to compute the sorted output array, also distributed over the p processors. Many existing algorithms take the approach of approximately load-balancing the output, leaving each processor with Θ(n/p) elements. However, in many cases, approximate load-balancing leads to inefficiencies in both the sorting itself and in further uses of the data after sorting. We provide a deterministic parallel sorting algorithm that uses parallel selection to produce any output distribution exactly, particularly one that is perfectly load-balanced. Furthermore, when using a comparison sort, this algorithm is 1-optimal in both computation and communication. We provide an empirical study that illustrates the efficiency of exact data splitting, and shows an improvement over two sample sort algorithms.Singapore-MIT Alliance (SMA
Quantum authentication with unitary coding sets
A general class of authentication schemes for arbitrary quantum messages is
proposed. The class is based on the use of sets of unitary quantum operations
in both transmission and reception, and on appending a quantum tag to the
quantum message used in transmission. The previous secret between partners
required for any authentication is a classical key. We obtain the minimal
requirements on the unitary operations that lead to a probability of failure of
the scheme less than one. This failure may be caused by someone performing a
unitary operation on the message in the channel between the communicating
partners, or by a potential forger impersonating the transmitter.Comment: RevTeX4, 10 page
Comprehensive analysis of gene expression patterns of -related genes
Abstract Background The Caenorhabditis elegans genome encodes ten proteins that share sequence similarity with the Hedgehog signaling molecule through their C-terminal autoprocessing Hint/Hog domain. These proteins contain novel N-terminal domains, and C. elegans encodes dozens of additional proteins containing only these N-terminal domains. These gene families are called warthog, groundhog, ground-like and quahog, collectively called hedgehog (hh)-related genes. Previously, the expression pattern of seventeen genes was examined, which showed that they are primarily expressed in the ectoderm. Results With the completion of the C. elegans genome sequence in November 2002, we reexamined and identified 61 hh-related ORFs. Further, we identified 49 hh-related ORFs in C. briggsae. ORF analysis revealed that 30% of the genes still had errors in their predictions and we improved these predictions here. We performed a comprehensive expression analysis using GFP fusions of the putative intergenic regulatory sequence with one or two transgenic lines for most genes. The hh-related genes are expressed in one or a few of the following tissues: hypodermis, seam cells, excretory duct and pore cells, vulval epithelial cells, rectal epithelial cells, pharyngeal muscle or marginal cells, arcade cells, support cells of sensory organs, and neuronal cells. Using time-lapse recordings, we discovered that some hh-related genes are expressed in a cyclical fashion in phase with molting during larval development. We also generated several translational GFP fusions, but they did not show any subcellular localization. In addition, we also studied the expression patterns of two genes with similarity to Drosophila frizzled, T23D8.1 and F27E11.3A, and the ortholog of the Drosophila gene dally-like, gpn-1, which is a heparan sulfate proteoglycan. The two frizzled homologs are expressed in a few neurons in the head, and gpn-1 is expressed in the pharynx. Finally, we compare the efficacy of our GFP expression effort with EST, OST and SAGE data. Conclusion No bona-fide Hh signaling pathway is present in C. elegans. Given that the hh-related gene products have a predicted signal peptide for secretion, it is possible that they constitute components of the extracellular matrix (ECM). They might be associated with the cuticle or be present in soluble form in the body cavity. They might interact with the Patched or the Patched-related proteins in a manner similar to the interaction of Hedgehog with its receptor Patched.</p
The Extended Star Formation History of the Andromeda Spheroid at 35 Kpc on the Minor Axis
Using the HST ACS, we have obtained deep optical images reaching well below
the oldest main sequence turnoff in fields on the southeast minor-axis of the
Andromeda Galaxy, 35 kpc from the nucleus. These data probe the star formation
history in the extended halo of Andromeda -- that region beyond 30 kpc that
appears both chemically and morphologically distinct from the metal-rich,
highly-disturbed inner spheroid. The present data, together with our previous
data for fields at 11 and 21 kpc, do not show a simple trend toward older ages
and lower metallicities, as one might expect for populations further removed
from the obvious disturbances of the inner spheroid. Specifically, the mean
ages and [Fe/H] values at 11 kpc, 21 kpc, and 35 kpc are 9.7 Gyr and -0.65,
11.0 Gyr and -0.87, and 10.5 Gyr and -0.98, respectively. In the best-fit model
of the 35 kpc population, one third of the stars are younger than 10 Gyr, while
only ~10% of the stars are truly ancient and metal-poor. The extended halo thus
exhibits clear evidence of its hierarchical assembly, and the contribution from
any classical halo formed via early monolithic collapse must be small.Comment: Accepted for publication in The Astrophysical Journal Letters. 4
pages, latex, 2 color figure
The Metal-Poor Halo of the Andromeda Spiral Galaxy (M31)
We present spectroscopic observations of red giant branch (RGB) stars over a
large expanse in the halo of the Andromeda spiral galaxy (M31), acquired with
the DEIMOS instrument on the Keck II 10-m telescope. Using a combination of
five photometric/spectroscopic diagnostics -- (1) radial velocity, (2)
intermediate-width DDO51 photometry, (3) Na I equivalent width (surface gravity
sensitive), (4) position in the color-magnitude diagram, and (5) comparison
between photometric and spectroscopic [Fe/H] estimates -- we isolate over 250
bona fide M31 bulge and halo RGB stars located in twelve fields ranging from R
= 12-165kpc from the center of M31 (47 of these stars are halo members with R >
60 kpc). We derive the photometric and spectroscopic metallicity distribution
function of M31 RGB stars in each of these fields. The mean of the resulting
M31 spheroid (bulge and halo) metallicity distribution is found to be
systematically more metal-poor with increasing radius, shifting from =
-0.47+/-0.03 (sigma = 0.39) at R = -0.94+/-0.06 (sigma =
0.60) at R ~ 30 kpc to = -1.26+/-0.10 (sigma = 0.72) at R > 60 kpc,
assuming [alpha/Fe] = 0.0. These results indicate the presence of a metal-poor
RGB population at large radial distances out to at least R = 160 kpc, thereby
supporting our recent discovery of a stellar halo in M31: its halo and bulge
(defined as the structural components with R^{-2} power law and de Vaucouleurs
R^{1/4} law surface brightness profiles, respectively) are shown to have
distinct metallicity distributions. If we assume an alpha-enhancement of
[alpha/Fe] = +0.3 for M31's halo, we derive = -1.5+/-0.1 (sigma =
0.7). Therefore, the mean metallicity and metallicity spread of this newly
found remote M31 RGB population are similar to those of the Milky Way halo.Comment: Accepted for publication in ApJ on May 4th, 2006 (submitted on Jan
30, 2006). 16 pages, 13 figures, 3 table
Kepler-432: a red giant interacting with one of its two long period giant planets
We report the discovery of Kepler-432b, a giant planet ()
transiting an evolved star with an orbital period of days. Radial velocities (RVs) reveal that
Kepler-432b orbits its parent star with an eccentricity of , which we also measure independently with
asterodensity profiling (AP; ), thereby confirming
the validity of AP on this particular evolved star. The well-determined
planetary properties and unusually large mass also make this planet an
important benchmark for theoretical models of super-Jupiter formation.
Long-term RV monitoring detected the presence of a non-transiting outer planet
(Kepler-432c; days), and adaptive optics imaging revealed a nearby
(0\farcs87), faint companion (Kepler-432B) that is a physically bound M dwarf.
The host star exhibits high signal-to-noise asteroseismic oscillations, which
enable precise measurements of the stellar mass, radius and age. Analysis of
the rotational splitting of the oscillation modes additionally reveals the
stellar spin axis to be nearly edge-on, which suggests that the stellar spin is
likely well-aligned with the orbit of the transiting planet. Despite its long
period, the obliquity of the 52.5-day orbit may have been shaped by star-planet
interaction in a manner similar to hot Jupiter systems, and we present
observational and theoretical evidence to support this scenario. Finally, as a
short-period outlier among giant planets orbiting giant stars, study of
Kepler-432b may help explain the distribution of massive planets orbiting giant
stars interior to 1 AU.Comment: 22 pages, 19 figures, 5 tables. Accepted to ApJ on Jan 24, 2015
(submitted Nov 11, 2014). Updated with minor changes to match published
versio
- …
