533 research outputs found

    A Two-Fluid Method for Ambipolar Diffusion

    Full text link
    We present a semi-implicit method for isothermal two-fluid ion-neutral ambipolar drift that is second-order accurate in space and time. The method has been implemented in the RIEMANN code for astrophysical fluid dynamics. We present four test problems that show the method works and correctly tracks the propagation of MHD waves and the structure of two-fluid C-shocks. The accurate propagation of MHD waves in the two-fluid approximation is shown to be a stringent test of the algorithm. We demonstrate that highly accurate methods are required in order to properly capture the MHD wave behaviour in the presence of ion-neutral friction.Comment: 29 pages, 16 figures, accepted to MNRA

    Progress report on fisheries development in El Salvador

    Get PDF
    "Project A. I. D./1a-688." "April 1974." Also available in microfilm under: State agricultural papers

    Stringent Limits on the Polarized Submillimeter Emission from Protoplanetary Disks

    Full text link
    We present arcsecond-resolution Submillimeter Array (SMA) polarimetric observations of the 880 um continuum emission from the protoplanetary disks around two nearby stars, HD 163296 and TW Hydrae. Although previous observations and theoretical work have suggested that a 2-3% polarization fraction should be common for the millimeter continuum emission from such disks, we detect no polarized continuum emission above a 3-sigma upper limit of 7 mJy in each arcsecond-scale beam, or <1% in integrated continuum emission. We compare the SMA upper limits with the predictions from the exploratory Cho & Lazarian (2007) model of polarized emission from T Tauri disks threaded by toroidal magnetic fields, and rule out their fiducial model at the ~10-sigma level. We explore some potential causes for this discrepancy, focusing on model parameters that describe the shape, magnetic field alignment, and size distribution of grains in the disk. We also investigate related effects like the magnetic field strength and geometry, scattering off of large grains, and the efficiency of grain alignment, including recent advances in grain alignment theory, which are not considered in the fiducial model. We discuss the impact each parameter would have on the data and determine that the suppression of polarized emission plausibly arises from rounding of large grains, reduced efficiency of grain alignment with the magnetic field, and/or some degree of magnetic field tangling (perhaps due to turbulence). A poloidal magnetic field geometry could also reduce the polarization signal, particularly for a face-on viewing geometry like the TW Hya disk. The data provided here offer the most stringent limits to date on the polarized millimeter-wavelength emission from disks around young stars.Comment: 15 pages, 6 figures, accepted for publication in Ap

    HD 172555: Detection of 63 μ m [OI] emission in a debris disc

    Full text link
    Astronomy and Astrophysics 546 (2012): L8 Reproduced with permission from Astronomy & AstrophysicsContext. HD 172555 is a young A7 star belonging to the β Pictoris moving group that harbours a debris disc. The Spitzer/IRS spectrum of the source showed mid-IR features such as silicates and glassy silica species, indicating the presence of a warm dust component with small grains, which places HD 172555 among the small group of debris discs with such properties. The IRS spectrum also shows a possible emission of SiO gas. Aims. We aim to study the dust distribution in the circumstellar disc of HD 172555 and to asses the presence of gas in the debris disc. Methods. As part of the GASPS open time key programme, we obtained Herschel/PACS photometric and spectroscopic observations of the source.We analysed PACS observations of HD 172555 and modelled the spectral energy distribution with a modified blackbody and the gas emission with a two-level population model with no collisional de-excitation. Results. We report for the first time the detection of [OI] atomic gas emission at 63.18 μm in the HD 172555 circumstellar disc. We detect excesses due to circumstellar dust toward HD 172555 in the three photometric bands of PACS (70, 100, and 160 μm).We derive a large dust particle mass of (4.8 ± 0.6) × 10−4 M⊕ and an atomic oxygen mass of 2.5 × 10−2R2 M⊕, where R in AU is the separation between the star and the inner disc. Thus, most of the detected mass of the disc is in the gaseous phaseThis research has been funded by Spanish grants AYA 2010-21161-C02-02, CDS2006-00070 and PRICIT-S2009/ESP-1496. J.-C. Augereau and J. Lebreton thank the ANR (contract ANR-2010 BLAN-0505-01, EXOZODI) and the CNES-PNP for financial support. C. Pinte, F. Menard and W.-F. Thi acknowledges funding from the EU FP7-2011 under Grant Agreement nr. 284405. G. Meeus is supported by RYC-2011-07920. G. Meeus, C. Eiroa, I. Mendigutía and B. Montesinos are partly supported by AYA-2011-26202. F.M. acknowledges support from the Millennium Science Initiative (Chilean Ministry of Economy), through grant ÒNucleus P10-022-F
    corecore