533 research outputs found
A Two-Fluid Method for Ambipolar Diffusion
We present a semi-implicit method for isothermal two-fluid ion-neutral
ambipolar drift that is second-order accurate in space and time. The method has
been implemented in the RIEMANN code for astrophysical fluid dynamics. We
present four test problems that show the method works and correctly tracks the
propagation of MHD waves and the structure of two-fluid C-shocks. The accurate
propagation of MHD waves in the two-fluid approximation is shown to be a
stringent test of the algorithm. We demonstrate that highly accurate methods
are required in order to properly capture the MHD wave behaviour in the
presence of ion-neutral friction.Comment: 29 pages, 16 figures, accepted to MNRA
Progress report on fisheries development in El Salvador
"Project A. I. D./1a-688." "April 1974." Also available in microfilm under: State agricultural papers
Recommended from our members
Estimating survival in patients with gastrointestinal cancers and brain metastases: An update of the graded prognostic assessment for gastrointestinal cancers (GI-GPA).
BackgroundPatients with gastrointestinal cancers and brain metastases (BM) represent a unique and heterogeneous population. Our group previously published the Diagnosis-Specific Graded Prognostic Assessment (DS-GPA) for patients with GI cancers (GI-GPA) (1985-2007, n = 209). The purpose of this study is to update the GI-GPA based on a larger contemporary database.MethodsAn IRB-approved consortium database analysis was performed using a multi-institutional (18), multi-national (3) cohort of 792 patients with gastrointestinal (GI) cancers, with newly-diagnosed BM diagnosed between 1/1/2006 and 12/31/2017. Survival was measured from date of first treatment for BM. Multiple Cox regression was used to select and weight prognostic factors in proportion to their hazard ratios. These factors were incorporated into the updated GI-GPA.ResultsMedian survival (MS) varied widely by primary site and other prognostic factors. Four significant factors (KPS, age, extracranial metastases and number of BM) were used to formulate the updated GI-GPA. Overall MS for this cohort remains poor; 8 months. MS by GPA was 3, 7, 11 and 17 months for GPA 0-1, 1.5-2, 2.5-3.0 and 3.5-4.0, respectively. >30% present in the worst prognostic group (GI-GPA of ≤1.0).ConclusionsBrain metastases are not uncommon in GI cancer patients and MS varies widely among them. This updated GI-GPA index improves our ability to estimate survival for these patients and will be useful for therapy selection, end-of-life decision-making and stratification for future clinical trials. A user-friendly, free, on-line app to calculate the GPA score and estimate survival for an individual patient is available at brainmetgpa.com
Stringent Limits on the Polarized Submillimeter Emission from Protoplanetary Disks
We present arcsecond-resolution Submillimeter Array (SMA) polarimetric
observations of the 880 um continuum emission from the protoplanetary disks
around two nearby stars, HD 163296 and TW Hydrae. Although previous
observations and theoretical work have suggested that a 2-3% polarization
fraction should be common for the millimeter continuum emission from such
disks, we detect no polarized continuum emission above a 3-sigma upper limit of
7 mJy in each arcsecond-scale beam, or <1% in integrated continuum emission. We
compare the SMA upper limits with the predictions from the exploratory Cho &
Lazarian (2007) model of polarized emission from T Tauri disks threaded by
toroidal magnetic fields, and rule out their fiducial model at the ~10-sigma
level. We explore some potential causes for this discrepancy, focusing on model
parameters that describe the shape, magnetic field alignment, and size
distribution of grains in the disk. We also investigate related effects like
the magnetic field strength and geometry, scattering off of large grains, and
the efficiency of grain alignment, including recent advances in grain alignment
theory, which are not considered in the fiducial model. We discuss the impact
each parameter would have on the data and determine that the suppression of
polarized emission plausibly arises from rounding of large grains, reduced
efficiency of grain alignment with the magnetic field, and/or some degree of
magnetic field tangling (perhaps due to turbulence). A poloidal magnetic field
geometry could also reduce the polarization signal, particularly for a face-on
viewing geometry like the TW Hya disk. The data provided here offer the most
stringent limits to date on the polarized millimeter-wavelength emission from
disks around young stars.Comment: 15 pages, 6 figures, accepted for publication in Ap
HD 172555: Detection of 63 μ m [OI] emission in a debris disc
Astronomy and Astrophysics 546 (2012): L8 Reproduced with permission from Astronomy & AstrophysicsContext. HD 172555 is a young A7 star belonging to the β Pictoris moving group that harbours a debris disc. The Spitzer/IRS spectrum of the source showed mid-IR features such as silicates and glassy silica species, indicating the presence of a warm dust component with small grains, which places HD 172555 among the small group of debris discs with such properties. The IRS spectrum also shows a possible emission of SiO gas.
Aims. We aim to study the dust distribution in the circumstellar disc of HD 172555 and to asses the presence of gas in the debris disc.
Methods. As part of the GASPS open time key programme, we obtained Herschel/PACS photometric and spectroscopic observations of the source.We analysed PACS observations of HD 172555 and modelled the spectral energy distribution with a modified blackbody and the gas emission with a two-level population model with no collisional de-excitation.
Results. We report for the first time the detection of [OI] atomic gas emission at 63.18 μm in the HD 172555 circumstellar disc. We detect excesses due to circumstellar dust toward HD 172555 in the three photometric bands of PACS (70, 100, and 160 μm).We derive a large dust particle mass of (4.8 ± 0.6) × 10−4 M⊕ and an atomic oxygen mass of 2.5 × 10−2R2 M⊕, where R in AU is the separation between the star and the inner disc. Thus, most of the detected mass of the disc is in the gaseous phaseThis research has been funded by Spanish grants AYA 2010-21161-C02-02, CDS2006-00070 and PRICIT-S2009/ESP-1496. J.-C. Augereau and J. Lebreton thank the ANR (contract ANR-2010 BLAN-0505-01, EXOZODI) and the CNES-PNP for financial support. C. Pinte, F. Menard and W.-F. Thi acknowledges funding from the EU FP7-2011 under Grant Agreement nr. 284405. G. Meeus is supported by RYC-2011-07920. G. Meeus, C. Eiroa, I. Mendigutía and B. Montesinos are partly supported by AYA-2011-26202. F.M. acknowledges support from the Millennium Science Initiative (Chilean Ministry of Economy), through grant ÒNucleus P10-022-F
- …
