171 research outputs found

    Using Fundamental Measure Theory to Treat the Correlation Function of the Inhomogeneous Hard-Sphere Fluid

    Get PDF
    We investigate the value of the correlation function of an inhomogeneous hard-sphere fluid at contact. This quantity plays a critical role in Statistical Associating Fluid Theory (SAFT), which is the basis of a number of recently developed classical density functionals. We define two averaged values for the correlation function at contact, and derive formulas for each of them from the White Bear version of the Fundamental Measure Theory functional, using an assumption of thermodynamic consistency. We test these formulas, as well as two existing formulas against Monte Carlo simulations, and find excellent agreement between the Monte Carlo data and one of our averaged correlation functions

    Reply to "Comment on `First-principles calculation of the superconducting transition in MgB2 within the anisotropic Eliashberg formalism'"

    Full text link
    The recent preprint by Mazin et al. [cond-mat/0212417] contains many inappropriate evaluations and/or criticisms on our published work [Phys. Rev. B 66, 020513 (2002) and Nature 418, 758 (2002)]. The preprint [cond-mat/0212417v1] was submitted to Physical Review B as a comment on one of our papers [Phys. Rev. B 66, 020513 (2002)]. In the reviewing process, Mazin et al. have withdrawn many of the statements contained in cond-mat/0212417v1, however two claims remain in their revised manuscript [cond-mat/0212417v3]: (1) the calculated variations of the superconducting energy gap within the sigma- or the pi-bands are not observable in real samples due to scatterings, and (2) the Coulomb repulsion mu(k,k') is negligibly small between sigma- and pi-states and thus should be approximated by a diagonal 2 x 2 matrix in the sigma and pi channels. Here, we point out that the former does not affect the validity of our theoretical work which is for the clean limit, and that the latter is not correct

    Joint density-functional theory for electronic structure of solvated systems

    Full text link
    We introduce a new form of density functional theory for the {\em ab initio} description of electronic systems in contact with a molecular liquid environment. This theory rigorously joins an electron density-functional for the electrons of a solute with a classical density-functional theory for the liquid into a single variational principle for the free energy of the combined system. A simple approximate functional predicts, without any fitting of parameters to solvation data, solvation energies as well as state-of-the-art quantum-chemical cavity approaches, which require such fitting.Comment: Fixed typos and minor updates to tex

    First-Principles Calculation of the Superconducting Transition in MgB2 within the Anisotropic Eliashberg Formalism

    Full text link
    We present a study of the superconducting transition in MgB2 using the ab-initio pseudopotential density functional method and the fully anisotropic Eliashberg equation. Our study shows that the anisotropic Eliashberg equation, constructed with ab-initio calculated momentum-dependent electron-phonon interaction and anharmonic phonon frequencies, yields an average electron-phonon coupling constant lambda = 0.61, a transition temperature Tc = 39 K, and a boron isotope-effect exponent alphaB = 0.31 with a reasonable assumption of mu* = 0.12. The calculated values for Tc, lambda, and alphaB are in excellent agreement with transport, specific heat, and isotope effect measurements respectively. The individual values of the electron-phonon coupling lambda(k,k') on the various pieces of the Fermi surface however vary from 0.1 to 2.5. The observed Tc is a result of both the raising effect of anisotropy in the electron-phonon couplings and the lowering effect of anharmonicity in the relevant phonon modes.Comment: 4 pages, 3 figures, 1 tabl
    corecore