30 research outputs found

    Actin binding domains direct actin-binding proteins to different cytoskeletal locations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Filamin (FLN) and non-muscle α-actinin are members of a family of F-actin cross-linking proteins that utilize Calponin Homology domains (CH-domain) for actin binding. Although these two proteins have been extensively characterized, little is known about what regulates their binding to F-actin filaments in the cell.</p> <p>Results</p> <p>We have constructed fusion proteins consisting of green fluorescent protein (GFP) with either the entire cross-linking protein or its actin-binding domain (ABD) and examined the localization of these fluorescent proteins in living cells under a variety of conditions. The full-length fusion proteins, but not the ABD's complemented the defects of cells lacking both endogenous proteins indicating that they are functional. The localization patterns of filamin (GFP-FLN) and α-actinin (GFP-αA) were overlapping but distinct. GFP-FLN localized to the peripheral cell cortex as well as to new pseudopods of unpolarized cells, but was observed to localize to the rear of polarized cells during cAMP and folate chemotaxis. GFP-αA was enriched in new pseudopods and at the front of polarized cells, but in all cases was absent from the peripheral cortex. Although both proteins appear to be involved in macropinocytosis, the association time of the GFP-probes with the internalized macropinosome differed. Surprisingly, the localization of the GFP-actin-binding domain fusion proteins precisely reflected that of their respective full length constructs, indicating that the localization of the protein was determined by the actin-binding domain alone. When expressed in a cell line lacking both filamin and α-actinin, the probes maintain their distinct localization patterns suggesting that they are not functionally redundant.</p> <p>Conclusion</p> <p>These observations strongly suggest that the regulation of the binding of these proteins to actin filaments is built into the actin-binding domains. We suggest that different actin binding domains have different affinities for F-actin filaments in functionally distinct regions of the cytoskeleton.</p

    Sequential Activities of Phosphoinositide 3-Kinase, PKB/Akt, and Rab7 during Macropinosome Formation in<i>Dictyostelium</i>

    No full text
    Macropinocytosis plays an important role in the internalization of antigens by dendritic cells and is the route of entry for many bacterial pathogens; however, little is known about the molecular mechanisms that regulate the formation or maturation of macropinosomes. Like dendritic cells, Dictyostelium amoebae are active in macropinocytosis, and various proteins have been identified that contribute to this process. As described here, microscopic analysis of null mutants have revealed that the class I phosphoinositide 3-kinases, PIK1 and PIK2, and the downstream effector protein kinase B (PKB/Akt) are important in regulating completion of macropinocytosis. Although actin-rich membrane protrusions form in these cell lines, they recede without forming macropinosomes. Imaging of cells expressing green fluorescent protein (GFP) fused to the pleckstrin homology domain (PH) of PKB (GFP-PHPKB) indicates that D3 phosphoinositides are enriched in the forming macropinocytic cup and remain associated with newly formed macropinosomes for &lt;1 minute. A fusion protein, consisting of GFP fused to an F-actin binding domain, overlaps with GFP-PHPKB in the timing of association with forming macropinosomes. Although macropinocytosis is reduced in cells expressing dominant negative Rab7, microscopic imaging studies reveal that GFP-Rab7 associates only with formed macropinosomes at approximately the time that F-actin and D3 phosphoinositide levels decrease. These results support a model in which F-actin modulating proteins and vesicle trafficking proteins coordinately regulate the formation and maturation of macropinosomes.</jats:p

    Patient-centered care and the electronic health record: exploring functionality and gaps

    Full text link
    Abstract Objective Healthcare systems have adopted electronic health records (EHRs) to support clinical care. Providing patient-centered care (PCC) is a goal of many healthcare systems. In this study, we sought to explore how existing EHR systems support PCC; defined as understanding the patient as a whole person, building relational connections between the clinician and patient, and supporting patients in health self-management. Materials and Methods We assessed availability of EHR functions consistent with providing PCC including patient goals and preferences, integrated care plans, and contextual and patient-generated data. We surveyed and then interviewed technical representatives and expert clinical users of 6 leading EHR systems. Questions focused on the availability of specific data and functions related to PCC (for technical representatives) and the clinical usefulness of PCC functions (for clinicians) in their EHR. Results Technical representatives (n = 6) reported that patient communication preferences, personalized indications for medications, and end of life preferences were functions implemented across 6 systems. Clinician users (n = 10) reported moderate usefulness of PCC functions (medians of 2–4 on a 5-pointy -35t scale), suggesting the potential for improvement across systems. Interviews revealed that clinicians do not have a shared conception of PCC. In many cases, data needed to deliver PCC was available in the EHR only in unstructured form. Data systems and functionality to support PCC are under development in these EHRs. Discussion and Conclusion There are current gaps in PCC functionality in EHRs and opportunities to support the practice of PCC through EHR redesign. </jats:sec

    Ice cores from the St-Elias Mountains, Yukon Territory, Canada : Their significance for the Holocene climate history, volcanism and air pollution trends in the Northwest Pacific region

    No full text
    A major achievement in research supported by the Kluane Lake Research Station was the recovery, in 2001–02, of a suite of cores from the icefields of the central St. Elias Mountains, Yukon, by teams of researchers from Canada, the United States, and Japan. This project led to the development of parallel, long (10^3 – 10^4 year) ice-core records of climate and atmospheric change over an altitudinal range of more than 2 km, from the Eclipse Icefield (3017 m) to the ice-covered plateau of Mt. Logan (5340 m). These efforts built on earlier work recovering single ice cores in this region. Comparison of these records has allowed for variations in climate and atmospheric composition to be linked with changes in the vertical structure and dynamics of the North Pacific atmosphere, providing a unique perspective on these changes over the Holocene. Owing to their privileged location, cores from the St. Elias Icefields also contain a remarkably detailed record of aerosols from various sources around or across the North Pacific. In this paper we review major scientific findings from the study of St. Elias Mountain ice cores, focusing on five main themes: (1) The record of stable water isotopes (δ18O, δD), which has unique characteristics that differ from those of Greenland, other Arctic ice cores, and even among sites in the St. Elias; (2) the snow accumulation history; (3) the record of pollen, biomass burning aerosol, and desert dust deposition; (4) the record of long-range air pollutant deposition (sulphate and lead); and (5) the record of paleo-volcanism. Our discussion draws on studies published since 2000, but based on older ice cores from the St. Elias Mountains obtained in 1980 and 1996

    Data_Sheet_1_Identifying clinical phenotypes of frontotemporal dementia in post-9/11 era veterans using natural language processing.pdf

    No full text
    IntroductionFrontotemporal dementia (FTD) encompasses a clinically and pathologically diverse group of neurodegenerative disorders, yet little work has quantified the unique phenotypic clinical presentations of FTD among post-9/11 era veterans. To identify phenotypes of FTD using natural language processing (NLP) aided medical chart reviews of post-9/11 era U.S. military Veterans diagnosed with FTD in Veterans Health Administration care.MethodsA medical record chart review of clinician/provider notes was conducted using a Natural Language Processing (NLP) tool, which extracted features related to cognitive dysfunction. NLP features were further organized into seven Research Domain Criteria Initiative (RDoC) domains, which were clustered to identify distinct phenotypes.ResultsVeterans with FTD were more likely to have notes that reflected the RDoC domains, with cognitive and positive valence domains showing the greatest difference across groups. Clustering of domains identified three symptom phenotypes agnostic to time of an individual having FTD, categorized as Low (16.4%), Moderate (69.2%), and High (14.5%) distress. Comparison across distress groups showed significant differences in physical and psychological characteristics, particularly prior history of head injury, insomnia, cardiac issues, anxiety, and alcohol misuse. The clustering result within the FTD group demonstrated a phenotype variant that exhibited a combination of language and behavioral symptoms. This phenotype presented with manifestations indicative of both language-related impairments and behavioral changes, showcasing the coexistence of features from both domains within the same individual.DiscussionThis study suggests FTD also presents across a continuum of severity and symptom distress, both within and across variants. The intensity of distress evident in clinical notes tends to cluster with more co-occurring conditions. This examination of phenotypic heterogeneity in clinical notes indicates that sensitivity to FTD diagnosis may be correlated to overall symptom distress, and future work incorporating NLP and phenotyping may help promote strategies for early detection of FTD.</p
    corecore