58 research outputs found
New Test Rig to Measure Alternating Current Losses of Both Low and High Critical Temperature Superconductors
This paper presents the design, development, operation, and test capabilities of a proposed superconducting coil testbed to measure alternating current (AC) losses at the NASA Glenn Research Center. Superconducting AC losses are important in the design of electric stators and rotors, power transmission lines, transformers, fault current limiters, magnets, and superconducting energy storage (not batteries). The new liquid-hydrogen-based rig will allow superconducting testing across a wide range of test parameters, including injected current up to 400 A, frequency (0 to 400 Hz), magnetic field (0 to 0.6 T), phase angle between induced voltage and injected current (180 to 180), coil coolant temperature (18 to 28 K), and AC power loss (5 to 30 W). While the target application of interest is 20 K superconducting MgB2 (the only superconductor that can presently be made with low losses) stator coils for future electric machines, the rig can accommodate test articles (TAs) with straight wire, tape, cables, coils of any shape, any allowable combination of superconducting wire and fluid (e.g., yttrium barium copper oxide (YBCO) coils and liquid nitrogen), and AC or direct current (DC) testing. The new spin rig builds upon the existing Air Force spin rig through a more flexible mode of fluid control, a wider gap space (up to 10.2 cm) for TAs, and the ability to accommodate TAs over a wider range of operating temperatures (18 to 95 K) using liquid hydrogen, gaseous helium, or liquid nitrogen as the working fluid, thus supporting direct cooled machines below 77 K
High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection
A microflow cytometer has been fabricated that detects and counts fluorescent particles flowing through a microchannel at a high speed based upon their fluorescence emission intensity. Dielectrophoresis is used to continuously focus particles within the flowing fluid stream into the centre of the device, which is 40 μm high and 250 μm wide. The method ensures that all the particles pass through an interrogation region approximately 5 μm in diameter, which is created by focusing a beam of light into a spot. The functioning of the device was demonstrated by detecting and counting fluorescent latex particles at a rate of up to 250 particles/s. A mixture of three different populations of latex particle was used, each sub-population with a distinct level of fluorescent intensity. The device was evaluated by comparison with a conventional fluorescent activated cell sorter (FACS) and numerical simulation demonstrated that for 6 mico m beads, and for this design of chip the theoretical throughput is of the order of 1000 particles/s (corresponding to a particle velocty of 1 mm/s)
Progressive Relaxation Versus Music On Reduction Of Anxiety In A Prison Setting
Two relaxation techniques were tested as means of producing anxiety reduction in a prison population
The Role of p70 S6K in Hepatic Stellate Cell Collagen Gene Expression and Cell Proliferation
During fibrosis the hepatic stellate cell (HSC) undergoes a complex activation process characterized by increased proliferation and extracellular matrix deposition. The 70-kDa ribosomal S6 kinase (p70S6K) is activated by mitogens, growth factors, and hormones in a phosphatidylinositol 3-kinase-dependent manner. p70S6K regulates protein synthesis, proliferation, and cell cycle control. Because these processes are involved in HSC activation, we investigated the role of p70S6K in HSC proliferation, cell cycle control, and type I collagen expression. Platelet-derived growth factor (PDGF) stimulated p70S6K phosphorylation, which was blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase. Rapamycin blocked phosphorylation of p70S6K but had no affect on PDGF-induced Akt phosphorylation, positioning p70S6K downstream of Akt. Transforming growth factor-beta, which inhibits HSC proliferation, did not affect PDGF-induced p70S6K phosphorylation. Rapamycin treatment did not affect alpha1(I) collagen mRNA but reduced type I collagen protein secretion. Expression of smooth muscle alpha-actin was not affected by rapamycin treatment, indicating that HSC activation was not altered. Rapamycin inhibited serum-induced DNA synthesis approximately 2-fold. Moreover, rapamycin decreased expression of cyclins D1, D3, and E but not cyclin D2, Rb-Ser780, and Rb-Ser795. Together, p70S6K plays a crucial role in HSC proliferation, collagen expression, and cell cycle control, thus representing a potential therapeutic target for liver fibrosis
Interleukin-6 Increases Rat Metalloproteinase-13 Gene Expression through Stimulation of Activator Protein 1 Transcription Factor in Cultured Fibroblasts
The role of IL-6 in collagen production and tissue remodeling is controversial. In Rat-1 fibroblasts, we measured the effect of IL-6 on matrix metalloproteinase-13 (MMP-13), c-jun, junB, and c-fos gene expression, binding of activator protein 1 (AP1) to DNA, amount of AP1 proteins, immunoreactive MMP-13 and TIMP-1 proteins, and Jun N-terminal kinase activity. We show that IL-6 increased MMP-13-mRNA and MMP-13 protein. These effects were exerted by acting on the AP1-binding site of the MMP-13 promoter, as shown by transfecting cells with reporter plasmids containing mutations in this element. Mobility shift assays demonstrated that IL-6 induced the DNA binding activity of AP1. This effect was accompanied by a marked increase in c-Jun, JunB, and c-Fos mRNA, as well as in c-Jun protein and its phosphorylated form. The latter is not due to increased Jun N-terminal kinase activity but to a decreased serine/threonine phosphatase activity. We conclude that IL-6 increases interstitial MMP-13 gene expression at the promoter level. This effect seems to be mediated by the induction of c-jun, junB, and c-fos gene expression, by the binding of AP1 to DNA, by increasing phosphorylated c-Jun, and by the inhibition of serine/threonine phosphatase activity. These effects of IL-6 might contribute to remodeling connective tissue
Lethal Mutants and Truncated Selection Together Solve a Paradox of the Origin of Life
BACKGROUND: Many attempts have been made to describe the origin of life, one of which is Eigen's cycle of autocatalytic reactions [Eigen M (1971) Naturwissenschaften 58, 465-523], in which primordial life molecules are replicated with limited accuracy through autocatalytic reactions. For successful evolution, the information carrier (either RNA or DNA or their precursor) must be transmitted to the next generation with a minimal number of misprints. In Eigen's theory, the maximum chain length that could be maintained is restricted to 100-1000 nucleotides, while for the most primitive genome the length is around 7000-20,000. This is the famous error catastrophe paradox. How to solve this puzzle is an interesting and important problem in the theory of the origin of life. METHODOLOGY/PRINCIPAL FINDINGS: We use methods of statistical physics to solve this paradox by carefully analyzing the implications of neutral and lethal mutants, and truncated selection (i.e., when fitness is zero after a certain Hamming distance from the master sequence) for the critical chain length. While neutral mutants play an important role in evolution, they do not provide a solution to the paradox. We have found that lethal mutants and truncated selection together can solve the error catastrophe paradox. There is a principal difference between prebiotic molecule self-replication and proto-cell self-replication stages in the origin of life. CONCLUSIONS/SIGNIFICANCE: We have applied methods of statistical physics to make an important breakthrough in the molecular theory of the origin of life. Our results will inspire further studies on the molecular theory of the origin of life and biological evolution
Adjuvant chemotherapy with gemcitabine and cisplatin compared to observation after curative intent resection of cholangiocarcinoma and muscle invasive gallbladder carcinoma (ACTICCA-1 trial) - a randomized, multidisciplinary, multinational phase III trial
The synthesis and characterization of polyacrylate anion-exchange stationary phases for protein separations in liquid chromatography
A new type of anion-exchange stationary phase was synthesized utilizing a polyacrylate polymer grafted to Licrospher 1000 diol silica particles which was used for protein separations in liquid chromatography. These materials exhibited superior chromatographic abilities, as well as producing static binding capacities which were 3-5 times the values obtained with conventional ion-exchange resins. Chapter one of this thesis will present a literature overview of the types of packing materials used for liquid chromatographic protein separations over the last three and a half decades, and discuss advantages and disadvantages of each type of packing material. Chapter 2 will present the synthetic schemes, as well as methods for characterizing these polyacrylate anion-exchange sorbents, such as elemental analysis and protein binding capacity results, as well as displaying some typical chromatograms that can be obtained with them. Discussion will also be spent upon the type of organic mechanism that these materials undergo during their polymerization reactions, utilizing methyl vinyl ketone and picric acid. Chapter 3 will present the results obtained from a thorough and systematic Z number study performed with these polyacrylate anion-exchange resins, and study trends observed associated with the nature of the stationary phase ligands produced. Chapter 4 of this thesis will discuss the thermodynamic parameters obtained with these ion-exchange sorbents, again studying trends observed based upon the nature of the polymerization products synthesized. Chapter 5 will portray the polymerization products produced from utilizing N- (Tris(hydroxymethyl)methyl) acrylamide as an initial starting monomer in the synthesis of anion-exchange resins, which should yield higher binding capacities than their diol silica counterparts, as well as again presenting the typical protein chromatograms that can be collected with columns manufactured from these materials
- …
