1,177 research outputs found

    Globular Cluster Populations in Four Early-Type Poststarburst Galaxies

    Full text link
    We present a study of the globular cluster systems of four early-type poststarburst galaxies using deep g and I-band images from the ACS camera aboard the Hubble Space Telescope (HST). All the galaxies feature shells distributed around their main bodies and are thus likely merger remnants. The color distribution of the globular clusters in all four galaxies shows a broad peak centered on g-I ~ 1.4, while PGC 6240 and PGC 42871 show a significant number of globular clusters with g-I ~ 1.0. The latter globular clusters are interpreted as being of age ~ 500 Myr and likely having been formed in the merger. The color of the redder peak is consistent with that expected for an old metal-poor population that is very commonly found around normal galaxies. However, all galaxies except PGC 10922 contain several globular clusters that are significantly brighter than the maximum luminosity expected of a single old metal-poor population. To test for multiple-age populations of overlapping g-I color, we model the luminosity functions of the globular clusters as composites of an old metal-poor subpopulation with a range of plausible specific frequencies and an intermediate-age subpopulation of solar metallicity. We find that three of the four sample galaxies show evidence for the presence of an intermediate-age (~ 1 Gyr) globular cluster population, in addition to the old metal-poor GC population seen in normal early-type galaxies. None of the galaxies show a significant population of clusters consistent with an old, metal-rich red cluster population that is typically seen in early-type galaxies.Comment: 41 pages, 13 figures, accepted for publication in AJ. Some figues have been downgraded to reduce their size

    Evidence for Three Subpopulations of Globular Clusters in the Early-Type Post-Starburst Shell Galaxy AM 0139-655

    Full text link
    We present deep HST ACS images of the post-starburt shell galaxy AM 0139-655. We find evidence for the presence of three distinct globular cluster subpopulations associated with this galaxy: a centrally concentrated young population (~ 0.4 Gyr), an intermediate age population (~ 1 Gyr) and an old, metal-poor population similar to that seen around normal galaxies. The g-I color distribution of the clusters is bimodal with peaks at 0.85 and 1.35. The redder peak at g-I=1.35 is consistent with the predicted color for an old metal-poor population. The clusters associated with the peak at g-I=0.85 are centrally concentrated and interpreted as a younger and more metal-rich population. We suggest that these clusters have an age of ~ 0.4 Gyr and solar metallicity based on a comparison with population synthesis models. The luminosity function of these "blue" clusters is well represented by a power law. Interestingly, the brightest shell associated with the galaxy harbors some of the youngest clusters observed. This seems to indicate that the same merger event was responsible for the formation of both the shells and the young clusters. The red part of the color distribution contains several very bright clusters, which are not expected for an old, metal-poor population. Furthermore, the luminosity function of the "red" GCs cannot be fit well by either a single gaussian or a single power law. A composite (gaussian + power law) fit to the LF of the red clusters yields both a low rms and very plausible properties for an old population plus an intermediate-age population of GCs. Hence, we suggest that the red clusters in AM 0139-655 consist of two distinct GC subpopulations, one being an old, metal-poor population as seen in normal galaxies and one having formed during a recent dissipative galaxy merger.Comment: 35 pages, 12 figures, accepted for publication in A

    Understanding Public Views about Air Quality and Air Pollution Sources in the San Joaquin Valley, California.

    Get PDF
    The San Joaquin Valley of California has poor air quality and high rates of asthma. Surveys were collected from 744 residents of the San Joaquin Valley from November 2014 to January 2015 to examine the public's views about air quality. The results of this study suggest that participants exposed to high PM2.5 (particulate matter less than 2.5 microns in size) concentrations perceived air pollution to be of the worst quality. Air quality in the San Joaquin Valley was primarily perceived as either moderate or unhealthy for sensitive groups. Females perceived air pollution to be of worse quality compared to males. Participants perceived unemployment, crime, and obesity to be the top three most serious community problems in the San Joaquin Valley. Participants viewed cars and trucks, windblown dust, and factories as the principle contributors to air pollution in the area. There is a need to continue studying public perceptions of air quality in the San Joaquin Valley with a more robust survey with more participants over several years and seasons

    Simultaneous stress and birefringence measurements during uniaxial elongation of polystyrene melts with narrow molecular weight distribution

    Get PDF
    Tensile stress and flow-induced birefringence have been measured during uniaxial elongation at a constant strain rate of two polystyrene melts with narrow molecular weight distribution. For both melts, the stress- optical rule (SOR) is found to be fulfilled upto a critical stress of 2.7MPa, independent of strain rate and temperature. Estimation of the Rouse times of the melts, from both the zero-shear viscosity and the dynamic-shear moduli at high frequency, shows that the violation of the SOR occurs when the strain rate multiplied by the Rouse time of the melt exceeds by approximately 3. The presented results indicate that in contrast to current predictions of molecular theories, the regime of extensional thinning observed by Bach et al. (2003) extends well beyond the onset of failure of the SOR, and therefore the onset of chain stretch in the non-Gaussian regim

    Renormalized one-loop theory of correlations in polymer blends

    Full text link
    The renormalized one-loop theory is a coarse-grained theory of corrections to the self-consistent field theory (SCFT) of polymer liquids, and to the random phase approximation (RPA) theory of composition fluctuations. We present predictions of corrections to the RPA for the structure function S(k)S(k) and to the random walk model of single-chain statics in binary homopolymer blends. We consider an apparent interaction parameter χa\chi_{a} that is defined by applying the RPA to the small kk limit of S(k)S(k). The predicted deviation of χa\chi_{a} from its long chain limit is proportional to N1/2N^{-1/2}, where NN is chain length. This deviation is positive (i.e., destabilizing) for weakly non-ideal mixtures, with \chi_{a} N \alt 1, but negative (stabilizing) near the critical point. The positive correction to χa\chi_{a} for low values of χaN\chi_{a} N is a result of the fact that monomers in mixtures of shorter chains are slightly less strongly shielded from intermolecular contacts. The depression in χa\chi_{a} near the critical point is a result of long-wavelength composition fluctuations. The one-loop theory predicts a shift in the critical temperature of O(N1/2){\cal O}(N^{-1/2}), which is much greater than the predicted O(N1){\cal O}(N^{-1}) width of the Ginzburg region. Chain dimensions deviate slightly from those of a random walk even in a one-component melt, and contract slightly with increasing χe\chi_{e}. Predictions for S(k)S(k) and single-chain properties are compared to published lattice Monte Carlo simulations.Comment: submitted to J. Chem. Phy

    Neurobiology of delusions in Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is associated with cognitive and functional impairment as well as neuropsychiatric sequelae, including psychotic symptoms such as delusions and hallucinations. Strong evidence supports the need to study delusions separate from hallucinations. Integrating the epidemiology, clinical correlates, and neuropathological and genetic literature for delusions in AD allows us to speculate on etiology and mechanisms. Plaque and tangle deposition in individuals with susceptible alleles of serotonergic, muscarinic, nicotinic, or Apoε4 genes appears to result in disruption of cortical circuitry, culminating in delusions. While delusions in AD correspond to a phenotype distinct from AD without delusions, subtypes of delusions may also define further distinct clinical entities. Persecutory delusions may occur earlier in the illness and have a more significant genetic component than misidentification delusions, which are associated with increased cognitive impairment and advanced dementia. Clearly distinguishing between these two syndromes is essential to making progress in the area of delusions in AD.peer-reviewe

    Model of a fluid at small and large length scales and the hydrophobic effect

    Full text link
    We present a statistical field theory to describe large length scale effects induced by solutes in a cold and otherwise placid liquid. The theory divides space into a cubic grid of cells. The side length of each cell is of the order of the bulk correlation length of the bulk liquid. Large length scale states of the cells are specified with an Ising variable. Finer length scale effects are described with a Gaussian field, with mean and variance affected by both the large length scale field and by the constraints imposed by solutes. In the absence of solutes and corresponding constraints, integration over the Gaussian field yields an effective lattice gas Hamiltonian for the large length scale field. In the presence of solutes, the integration adds additional terms to this Hamiltonian. We identify these terms analytically. They can provoke large length scale effects, such as the formation of interfaces and depletion layers. We apply our theory to compute the reversible work to form a bubble in liquid water, as a function of the bubble radius. Comparison with molecular simulation results for the same function indicates that the theory is reasonably accurate. Importantly, simulating the large length scale field involves binary arithmetic only. It thus provides a computationally convenient scheme to incorporate explicit solvent dynamics and structure in simulation studies of large molecular assemblies

    Linking the structural properties of galaxies and their star formation histories with STAGES

    Get PDF
    We study the links between star formation history and structure for a large mass-selected galaxy sample at 0.05 ≤ zphot ≤ 0.30. The galaxies inhabit a very broad range of environments, from cluster cores to the field. Using Hubble Space Telescope (HST) images, we quantify their structure following Hoyos et al., and divide them into disturbed and undisturbed. We also visually identify mergers. Additionally, we provide a quantitative measure of the degree of disturbance for each galaxy (‘roughness’). The majority of elliptical and lenticular galaxies have relaxed structure, showing no signs of ongoing star formation. Structurally disturbed galaxies, which tend to avoid the lowest density regions, have higher star formation activity and younger stellar populations than undisturbed systems. Cluster spirals with reduced/quenched star formation have somewhat less disturbed morphologies than spirals with ‘normal’ star formation activity, suggesting that these ‘passive’ spirals have started their morphological transformation into S0s. Visually identified mergers and galaxies not identified as mergers but with similar roughness have similar specific star formation rates and stellar ages. The degree of enhanced star formation is thus linked to the degree of structural disturbance, regardless of whether it is caused by major mergers or not. This suggests that merging galaxies are not special in terms of their higher-than-normal star formation activity. Any physical process that produces ‘roughness’, or regions of enhanced luminosity density, will increase the star formation activity in a galaxy with similar efficiency. An alternative explanation is that star formation episodes increase the galaxies’ roughness similarly, regardless of whether they are merger induced or not
    corecore