337 research outputs found
Reduced fusion systems over <i>p</i>-groups with abelian subgroup of index <i>p</i>: II
Let p be an odd prime, and let S be a p-group with a unique elementary abelian subgroup A of index p. We classify the simple fusion systems over all such groups S in which A is essential. The resulting list, which depends on the classification of finite simple groups, includes a large variety of new, exotic simple fusion systems
FinRec:The 3rd International Workshop on Personalization & Recommender Systems in Financial Services
Improving Application Performance by Dynamically Balancing Speed and Complexity in a GALS Microprocessor
Microprocessors are traditionally designed to provide “best overall” performance across a wide range of applications and operating environments. Several groups have proposed hardware techniques that save energy by “downsizing” hardware resources that are underutilized by particular applications. We explore the converse: “upsizing” hardware resources in order to improve performance relative to an aggressively clocked baseline processor. Our proposal depends critically on the ability to change frequencies independently in separate domains of a globally asynchronous, locally synchronous (GALS) microprocessor. We use a variant of our multiple clock domain (MCD) processor, with four independently clocked domains. Each domain is streamlined with modest hardware structures for very high clock frequency. Key structures can then be upsized on demand to exploit more distant parallelism, improve branch prediction, or increase cache capacity. Although doing so requires decreasing the associated domain frequency, other domain frequencies are unaffected. Measuring across a broad suite of application benchmarks, we find that configuring just once per application increases performance by an average of 17.6% compared to the best fully synchronous design. When adapting to application phases, performance improves by over 20%
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).
Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
Dynamically Trading Frequency for Complexity in a GALS Microprocessor
Microprocessors are traditionally designed to provide “best overall” performance across a wide range of applications and operating environments. Several groups have proposed hardware techniques that save energy by “downsizing” hardware resources that are underutilized by the current application phase. Others have proposed a different energy-saving approach: dividing the processor into domains and dynamically changing the clock frequency and voltage within each domain during phases when the full domain frequency is not required. What has not been studied to date is how to exploit the adaptive nature of these approaches to improve performance rather than to save energy. In this paper, we describe an adaptive globally asynchronous, locally synchronous (GALS) microprocessor with a fixed global voltage and four independently clocked domains. Each domain is streamlined with modest hardware structures for very high clock frequency. Key structures can then be upsized on demand to exploit more distant parallelism, improve branch prediction, or increase cache capacity. Although doing so requires decreasing the associated domain frequency, other domain frequencies are unaffected. Our approach, therefore, is to maximize the throughput of each domain by finding the proper balance between the number of clock periods, and the clock frequency, for each application phase. To achieve this objective, we use novel hardware-based control techniques that accurately and efficiently capture the performance of all possible cache and queue configurations within a single interval, without having to resort to exhaustive online exploration or expensive offline profiling. Measuring across a broad suite of application benchmarks, we find that configuring our adaptive GALS processor just once per application yields 17.6% better performance, on average, than that of the “best overall” fully synchronous design. By adapting automatically to application phases, we can increase this advantage to more than 20%
Profile-based Dynamic Voltage and Frequency Scaling for a Multiple Clock Domain Microprocessor
A Multiple Clock Domain (MCD) processor addresses the challenges of clock distribution and power dissipation by dividing a chip into several (coarse-grained) clock domains, allowing frequency and voltage to be reduced in domains that are not currently on the application’s critical path. Given a reconfiguration mechanism capable of choosing appropriate times and values for voltage/frequency scaling, an MCD processor has the potential to achieve significant energy savings with low performance degradation. Early work on MCD processors evaluated the potential for energy savings by manually inserting reconfiguration instructions into applications, or by employing an oracle driven by off-line analysis of (identical) prior program runs. Subsequent work developed a hardware-based on-line mechanism that averages 75–85% of the energy-delay improvement achieved via off-line analysis. In this paper we consider the automatic insertion of reconfiguration instructions into applications, using profiledriven binary rewriting. Profile-based reconfiguration introduces the need for “training runs” prior to production use of a given application, but avoids the hardware complexity of on-line reconfiguration. It also has the potential to yield significantly greater energy savings. Experimental results (training on small data sets and then running on larger, alternative data sets) indicate that the profile-driven approach is more stable than hardware-based reconfiguration, and yields virtually all of the energy-delay improvement achieved via off-line analysis
Malignant melanoma of the rectum: a case report
<p>Abstract</p> <p>Introduction</p> <p>Anorectal melanoma represents an unusual but important presentation of rectal malignancy. There have only been a few cases reported and the optimum management for this condition is still undecided, however, prompt diagnosis is essential. We have outlined current treatment options.</p> <p>Case presentation</p> <p>We report a case of malignant melanoma of the rectum in a 55-year-old Caucasian man presenting as an emergency with rectal bleeding. Biopsies were taken of the fleshy mass found on digital examination, which confirmed malignant melanoma. No distant metastases were found. He underwent an abdominoperineal resection. We report the surgical management of this rare and aggressive malignancy.</p> <p>Conclusion</p> <p>Treatment options for this condition are divergent. Surgical management varies from wide local excision to abdominoperineal resection. Clinical awareness in both medical and surgical clinics is required for prompt diagnosis and treatment.</p
Dynamic Frequency and Voltage Scaling for a Multiple-Clock-Domain Microprocessor
Multiple clock domains is one solution to the increasing problem of propagating the clock signal across increasingly larger and faster chips. The ability to independently scale frequency and voltage in each domain creates a powerful means of reducing power dissipation
- …
