107 research outputs found

    Short time sports exercise boosts motor imagery patterns: implications of mental practice in rehabilitation programs

    Get PDF
    Motor imagery (MI) is a commonly used paradigm for the study of motor learning or cognitive aspects of action control. The rationale for using MI training to promote the relearning of motor function arises from research on the functional correlates that MI shares with the execution of physical movements. While most of the previous studies investigating MI were based on simple movements in the present study a more attractive mental practice was used to investigate cortical activation during MI. We measured cerebral responses with functional magnetic resonance imaging (fMRI) in twenty three healthy volunteers as they imagined playing soccer or tennis before and after a short physical sports exercise. Our results demonstrated that only 10 minutes of training are enough to boost motor imagery patterns in motor related brain regions including premotor cortex and supplementary motor area (SMA) but also fronto-parietal and subcortical structures. This supports previous findings that motor imagery has beneficial effects especially in combination with motor execution when used in motor rehabilitation or motor learning processes. We conclude that sports MI combined with an interactive game environment could be a promising additional tool in future rehabilitation programs aiming to improve upper or lower limb functions or support neuroplasticity

    Cybathlon experiences of the Graz BCI racing team Mirage91 in the brain-computer interface discipline

    Get PDF
    Abstract Background In this work, we share our experiences made at the world-wide first CYBATHLON, an event organized by the Eidgenössische Technische Hochschule Zürich (ETH Zürich), which took place in Zurich in October 2016. It is a championship for severely motor impaired people using assistive prototype devices to compete against each other. Our team, the Graz BCI Racing Team MIRAGE91 from Graz University of Technology, participated in the discipline “Brain-Computer Interface Race”. A brain-computer interface (BCI) is a device facilitating control of applications via the user’s thoughts. Prominent applications include assistive technology such as wheelchairs, neuroprostheses or communication devices. In the CYBATHLON BCI Race, pilots compete in a BCI-controlled computer game. Methods We report on setting up our team, the BCI customization to our pilot including long term training and the final BCI system. Furthermore, we describe CYBATHLON participation and analyze our CYBATHLON result. Results We found that our pilot was compliant over the whole time and that we could significantly reduce the average runtime between start and finish from initially 178 s to 143 s. After the release of the final championship specifications with shorter track length, the average runtime converged to 120 s. We successfully participated in the qualification race at CYBATHLON 2016, but performed notably worse than during training, with a runtime of 196 s. Discussion We speculate that shifts in the features, due to the nonstationarities in the electroencephalogram (EEG), but also arousal are possible reasons for the unexpected result. Potential counteracting measures are discussed. Conclusions The CYBATHLON 2016 was a great opportunity for our student team. We consolidated our theoretical knowledge and turned it into practice, allowing our pilot to play a computer game. However, further research is required to make BCI technology invariant to non-task related changes of the EEG

    Pre- and post-task resting-state differs in clinical populations

    Get PDF
    Resting-state functional connectivity has generated great hopes as a potential brain biomarker for improving prevention, diagnosis, and treatment in psychiatry. This neuroimaging protocol can routinely be performed by patients and does not depend on the specificities of a task. Thus, it seems ideal for big data approaches that require aggregating data across multiple studies and sites. However, technical variability, diverging data analysis approaches, and differences in data acquisition protocols introduce heterogeneity to the aggregated data. Besides these technical aspects, a prior task that changes the psychological state of participants might also contribute to heterogeneity. In healthy participants, studies have shown that behavioral tasks can influence resting-state measures, but such effects have not yet been reported in clinical populations. Here, we fill this knowledge gap by comparing resting-state functional connectivity before and after clinically relevant tasks in two clinical conditions, namely substance use disorders and phobias. The tasks consisted of viewing craving-inducing and spider anxiety provoking pictures that are frequently used in cue-reactivity studies and exposure therapy. We found distinct pre- vs post-task resting-state connectivity differences in each group, as well as decreased thalamo-cortical and increased intra-thalamic connectivity which might be associated with decreased vigilance in both groups. Our results confirm that resting-state measures can be strongly influenced by prior emotion-inducing tasks that need to be taken into account when pooling resting-state scans for clinical biomarker detection. This demands that resting-state datasets should include a complete description of the experimental design, especially when a task preceded data collection

    Progressive modulation of resting‑state brain activity during neurofeedback of positive‑social emotion regulation networks

    Get PDF
    Neurofeedback allows for the self-regulation of brain circuits implicated in specific maladaptive behaviors, leading to persistent changes in brain activity and connectivity. Positive-social emotion regulation neurofeedback enhances emotion regulation capabilities, which is critical for reducing the severity of various psychiatric disorders. Training dorsomedial prefrontal cortex (dmPFC) to exert a top-down influence on bilateral amygdala during positive-social emotion regulation progressively (linearly) modulates connectivity within the trained network and induces positive mood. However, the processes during rest that interleave the neurofeedback training remain poorly understood. We hypothesized that short resting periods at the end of training sessions of positive-social emotion regulation neurofeedback would show alterations within emotion regulation and neurofeedback learning networks. We used complementary model-based and data-driven approaches to assess how resting-state connectivity relates to neurofeedback changes at the end of training sessions. In the experimental group, we found lower progressive dmPFC self-inhibition and an increase of connectivity in networks engaged in emotion regulation, neurofeedback learning, visuospatial processing, and memory. Our findings highlight a large-scale synergy between neurofeedback and resting-state brain activity and connectivity changes within the target network and beyond. This work contributes to our understanding of concomitant learning mechanisms post training and facilitates development of efficient neurofeedback training.publishedVersio
    corecore